
UML-MX©: Boosting Power of Object-Oriented
Modeling and Enriching User Experience

Ulrich Frank1[0000−0002−8057−1836] and Pierre Maier1[0009−0000−4594−6578]

University of Duisburg-Essen

Abstract. Despite their considerable dissemination, existing UML mod-
eling tools suffer from significant limitations that stand in the way of their
profitable use in practice as well as in teaching. This paper presents a
new UML modeling tool, called UML-MX©, that overcomes these limi-
tations. It is based on a language architecture that not only enables the
integration of class and object diagrams, but also the execution of ob-
jects in the diagram editor. Thus, it promotes a more inspiring learning
experience. At the same time, it goes beyond the limitations of tradi-
tional approaches to model-driven software development by enabling a
common representation of models and programs.

Keywords: multi-level language architecture · teaching UML · exe-
cutable models.

1 Introduction

Despite justified criticism of various weaknesses, UML is widely used in practice.
Object-oriented modeling with UML is also an integral part of many curricula,
both in computer science and business informatics. In this paper, we present
a UML object-model editor that promises substantial advantages over existing
UML modeling tools. It is worth noting that the development of a UML tool
was not actually on our research agenda. For more than ten years, our research
was mainly focused on the development and use of domain-specific languages
in general and multi-level language architectures in particular. This work led
to the development of a multi-level modeling and execution environment, the
XModelerML© [3] (for more details see www.le4mm.org), [9], which is based
on the foundational language engineering environment XModeler© [7]. UML
played no role in this context, since the aim of our research was to overcome the
limitations of languages like UML. Nevertheless, we still had to deal with UML
as part of our teaching program – mainly in a modeling course at Bachelor level.

Against this background, and in view of the large number of existing UML
tools, it may seem absurd to develop yet another UML modeling tool. How-
ever, there are two main reasons why we decided to do so. On the one hand, we
had to realize that despite the obvious advantages associated with multi-level
language architectures, software developers and modelers are often reluctant to
adopt multi-level modeling. The effort to learn and appreciate multi-level mod-
eling is perceived as rather high, not to say as daunting. In addition, there is

2 Ulrich Frank and Pierre Maier

no standard yet, which is a threat to the protection of respective investments.
Against this background, it became evident that providing convincing incentives
for using multi-level modeling is essential for its adoption. On the other hand,
our experience with teaching object-oriented modeling reveals that students of-
ten struggle with learning how to design a proper object model, a fact that led
to the question how students’ modeling skills could be effectively improved. One
possible answer to this question was to provide them with a modeling environ-
ment that enriches their learning experience by providing a more natural access
to objects and classes.

At first, the emphasis of our work was mainly on lowering the entry barri-
ers to multi-level modeling for modelers and software developers. Based on the
assumption that UML is still used by many, we came to the conclusion that
providing modelers with a UML object-model editor that provides advantages
over traditional UML tools might work as an effective incentive. Once modelers
got used to these advantages, it might be easier to draw their attention to fur-
ther multi-level features and eventually to multi-level modeling in general. From
a managerial perspective this approach makes sense, too. At first, stick to the
standard, then gradually extend it to a more versatile and powerful tool. The
idea was, in other words, to introduce multi-level modeling through the backdoor
[3].

In parallel we worked on improving a course on object-oriented modeling in a
Bachelor’s program and a Master’s course on advanced modeling and DSML de-
sign. In both cases, we were not satisfied with the students’ achievements. Even
though students represent a different target group than professional users, it be-
came obvious that a UML editor that is based on a multi-level language archi-
tecture would also help with improving teaching and learning of object-oriented
modeling and would be suited to pave the way for teaching the development and
application of DSMLs and, eventually, of multi-level models.

The UML-MX© (“Modeling and Execution”) tool presented in this paper
serves both purposes. In the following we will describe benefits of using a multi-
level tool like the XModelerML for creating and using UML class diagrams and
then define requirements for a dedicated UML object model editor based on
the XModelerML (Sec. 2.2). Against this background, we present the design and
implementation of UML-MX© (Sec. 3) as well as a preliminary evaluation (Sec.
4).

2 Prospects and Requirements

Given the limited resources we had for developing UML-MX©, it was essential
that the XModelerML already provides substantial benefits for developing UML-
like object models. However, its additional features, such as an arbitrary number
of classification levels, deferred instantiation of properties, and the fact that every
class is an object is likely to be perceived as confusing, both by experienced
professionals and students. Therefore, UML-MX© should allow to benefit from

UML-MX© 3

specific advantages of a multi-level language architecture without placing the
burden on users to learn specific multi-level concepts.

2.1 Existing Benefits

A multi-level language architecture offers some clear attractive advantages for
creating and using object models. In the industrial application of conceptual
modeling, model-driven software development is often regarded as a particularly
efficient way to produce code of high quality [10]. In the ideal case, code is
widely, if not entirely, generated from models. However, a serious problem stands
in the way of this appealing vision. Model and code are represented separately,
with the result that sooner or later they will no longer be synchronised. As a
consequence, the investments in the models gradually lose their value. That may
lead to the question why there is need for generating code, and, as a consequence,
for two separate representations anyway. In fact, there is no compelling reason
for this. Rather, this circumstance is due to the limitations of common object-
oriented programming languages. Classes, which are conceptually located at M1,
are actually represented by objects at M0 in the model editor. Objects at M0
do not allow for further instantiation. Therefore, generating code is the only
option to enable the instantiation and execution of models. UML even provides
two languages for creating class and object diagrams, without offering a proper
integration of the two.

By contrast, a multi-level language architecture does not only allow for an
arbitrary number of classification levels, it also stipulates that every class is an
object, that is, has a state and is executable. Hence, classes that are conceptually
located at M1 can be implemented at M1. In other words: model and code share
the same representation. This is at least the case for executable multi-level lan-
guages like the FMMLX which was developed by our team [3]. As a consequence,
modelers are relieved from the burden of synchronizing code and model. At the
same time testing a model is supported by checking its instances in the same
editor. In addition, there are two further goodies provided by the XModelerML

already. Constraints are immediately effective after their specification. They are
specified with XOCL, an extended, executable version of OCL [7]. Delegation is
not just a pattern like in UML but a language concept with execution semantics
[6].

Students are likely to benefit from the integration of class and object dia-
grams, too. First, there are various studies, which indicate that beginners often
struggle with the abstraction required to appreciate the concept of a class. It
is easier for them to think of particular objects at first. Therefore, a tool that
allows to look not only at classes and objects simultaneously, but also to see the
effect of changing a class has on its instances immediately should help students
with developing a proper understanding of the fundamental dichotomy of types
and instances.

Also, the common representation of object models and their instantiations
helps with illustrating problems originating in misleading abstraction. This is,

4 Ulrich Frank and Pierre Maier

the case, e.g., for circles or for the inappropriate use of specialization. While cor-
responding object models may look fine at first glance, looking at corresponding
instances will often immediately reveal the problem.

2.2 Specific Requirements

Making use of the features already provided by the XModelerML would suffice
to realise a significant advance over existing UML modeling tools. This applies
in particular to the ability to edit class and object diagrams together as well
as the executability of objects and constraints. Therefore, the development of
UML-MX© was mainly aimed at avoiding the confusion caused by multi-level
concepts. To provide for a systematic development of the tool, we conducted a
requirements analysis. The following requirements are grouped into three cate-
gories. General requirements are marked with “G”, those that are marked with
an “S” are specifically focused on teaching and learning issues, while “P” marks
requirements that may concern professional developers.

As the scope of this paper is limited and the didactically motivated extensions
of UML-MX© will be described in more detail in another publication, we will
limit ourselves here to a small selection of corresponding requirements.

Requirement G1: Abstract syntax, semantics and concrete syntax should
widely correspond to the UML. Rationale: Professionals should be familiar with
the UML and students are supposed to learn it.

Requirement G2: Specific multi-level concepts and corresponding GUI el-
ements should be effectively hidden from users. Rationale: Multi-level concepts
could distract from UML, and might be perceived as confusing.

Requirement P1: The tool should allow for adding new language concepts.
Rationale: To increase productivity and quality in modeling projects it can be
helpful to add specific language concepts to the UML that are immediately
effective after their specification – even while working on a model. The UML
addresses this need with stereotypes. UML tools hardly allow for defining a
precise semantics of stereotypes.

Requirement G3: An advanced UML editor should offer optional concepts
suited to overcome specific shortcomings of the UML. These extensions should be
monotonic, that is, they should not prevent from using UML in a “regular” way.
Rationale: Respective extensions would facilitate a more efficient and consistent
use of UML.

Requirement S1: A UML editor used for educational purposes should offer
modeling exercises to students. Rationale: Including modeling exercises helps
students to apply their knowledge and self-assess their skills.

Requirement S2: A UML editor should give instructive feedback on mod-
eling errors. Rationale: Offering detailed and instructive feedback on errors helps
students understand their mistakes and thus improve their modeling skills. Er-
rors should be perceived as valuable teaching moments.

Requirement S3: A seamless transition from UML to DSML development
and full-scale multi-level modeling should be supported. Rationale: Enabling a
seamless transition to DSMLs and multi-level modeling ensures that students

UML-MX© 5

can build upon foundational modeling knowledge to address more specific and
complex modeling needs step-by-step.

Most of these requirements are widely satisfied already by inherent features
of the XModelerML already, which will be shown in the next section.

3 Design and Implementation

At the core of the proposed tool is a language architecture that is enabled by a
specific meta model.

doc: String

id: String

Doc

doc: String

id: String

Doc

body: String

id: String

Constraint

body: String

id: String

Constraint

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

name: String

type: Classifier

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

Attribute

0,*1,1

1,1
0,*

0,*

Interface Layer

0,1

0,1

1,1

2,2

1,10,*

extended features

1,1

0,*

uinherits from uinherits from

0,*

0,*

 isIntrinsic: Boolean

 instLevel: Integer

MetaClass

 isIntrinsic: Boolean

 instLevel: Integer

MetaClass

totalInstances(): Seg

allInstances(): Seq

level = ...

level: Integer

MetaAdaptor

level: Integer

MetaAdaptor

new(): Object

newAtLevel(l: Integer): Object

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

name: String

codeBox: Element

traced: Element

isIntrinsic: Boolean

instLevel: Integer

isCore: Boolean

CompiledOperation

context MetaClass

@Constraint LevelOne

 self.level = 1

end

C1

C1

u

part of

u

part of

u

part of

u

part of

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

CollectionMult

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

CollectionMult

type: AssocType

Association

type: AssocType

Association

new() : Object

name: String

isAbstract: Boolean

Class

new() : Object

name: String

isAbstract: Boolean

Class

0,1

Object

get(name: String): Object

set(name: String, value: Object): Object

copy(): Object

save(fileName: String): Object

Object

get(name: String): Object

set(name: String, value: Object): Object

copy(): Object

save(fileName: String): Object

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

2,2

1,1

instantiated from

inherits from

Fig. 1. Foundational Meta Model of UML-MX©

.

6 Ulrich Frank and Pierre Maier

3.1 Meta Model

The XModelerML is based on a reflexive meta model called XCore ([7], pp. 40),
which is extended by specific multi-level features resulting in the multi-level
language FMMLX (see Fig. 1).

It allows for creating multiple classification levels. It also makes sure that
every class is an object, since Class inherits from Object. Objects can execute
operations that are defined with the class (instance of Class), the objects are
instantiated from. Regular FMMLX classes can be instantiated at any level from
the class MetaClass.

The meta model allows to modify existing language features and add new
ones with full execution semantics (req. P1).

3.2 Adaptation of GUI and Concrete Syntax

UML-MX© differs from the regular XModelerML in three ways. First, multi-level
language features irrelevant for modeling UML classes and objects have been
faded out for the user (Req. G2). Different from the XModelerML, every class
created with UML-MX© is always at M1. As a consequence, the instantiation
level of all class properties such as attributes, operations and associations is zero.

Second, the concrete syntax of UML was widely adopted (Req. G1). As shown
in Fig. 2, the graphical notation corresponds to UML, with the exception of
added features such as delegation and constraints.

Third, a guided-modeling mode has been implemented that serves as the basis
for self-guided training exercises (Req. S1).

UML-MX© and XModelerML represent two versions of the same system.
To allow for a smooth transition from UML to multi-level languages (Req. S3),
additional GUI elements can be gradually unlocked, eventually resulting in a
fully-featured multi-level modeling tool.

In order to overcome certain limitations of UML, UML-MX© implements
an extended version of UML, called UML++. Note that these extensions are
monotonic, that is, they do not exclude “regular” use of UML:

– Objects and classes may be modeled within the same diagram.
– An object created with UML++ is always instantiated from its actual, pre-

viously defined class.
– The specification of operations is not restricted to their signature but may

also contain a body, which can be accessed by double-clicking on the signa-
ture.

– Representations of UML++ objects include a compartment for the return
values of their operations.

– Each attribute in UML++ is specified either by a given data type or class
(such as Date) or by a user-defined class.

– In UML++, the representation of a class contains an additional compartment
that includes identifiers of its constraints.

UML-MX© 7

– Violations to constraints are shown in UML++ objects. This includes viola-
tions of custom constraints (XOCL expressions) or implicit constraints such
as association multiplicity.

– In contrast to the UML, UML++ provides native support for delegation
relationships as a means to overcome pitfalls of specialization (see Req. G3).

We have specified ten learning units that each contain an exemplary illus-
tration and a set of modeling exercises. Modeling exercises are opened in the
guided-modeling mode, which assists students in developing a model step-by-
step.

3.3 Demonstration

Fig. 2 serves to demonstrate the use of the UML-MX© environment. The tool
itself, as well as screencasts that demonstrate the guided tool introduction, can
be accessed via www.LE4MM.org/uml-mx/. In contrast to prevalent UML class-
diagram editors, the palette is dynamically extended by every class that is cre-
ated within a diagram. Users can click a class on the palette and then click on the
modeling canvas to create an instance of this class. By selecting Class from the
palette, users can create a new class. The same principle applies to associations,
links, delegations, and notes.

The specification of attributes can refer to standard data types (like String),
predefined classes (like Date), user-defined classes, or user-defined enumerations.
Slot values are accepted only if they conform to the specification of the corre-
sponding attribute.

In UML-MX©, the context of a constraint is added automatically, users
must only specify the XOCL expression. Users can furthermore specify custom
fail messages that are shown in an object if the constraint is being violated (see
object Modeling in Fig. 2). For a detailed illustration of how to specify and
evaluate constraints see the screencast at www.LE4MM.org/uml-mx/.

Operations contain a body written in XOCL. Operations may or may not
be shown in objects. In Fig. 2, for example, the operation getCourses():
Set(Course) is not displayed in student objects. Two modes to add/modify
operations are available for students: a standard mode and an expert mode. In
the standard mode, users can only adjust the signature of the operation. The
body can only be modified in the expert mode.

Furthermore, users can manage a model’s complexity with views and dia-
grams. Views are divisions of a diagram based on layout alone. A diagram is a
visual representation of a model that can be manipulated in the editor (Fig. 2
shows one UML++ diagram). Users can create multiple diagrams for a model,
allowing for a separation of class and object diagrams if desired.

4 Evaluation

Most of the requirements listed in Subsec. 2.2 have been fully implemented, which
follows from the description of the implementation in Subsec. 3. Others, espe-
cially those that aim at additional support for students such as requirements S1

8 Ulrich Frank and Pierre Maier

or S2 are subject of ongoing work. The step-by-step transition is currently sup-
ported only to a limited extend: by switching didactic mode from true to false in
the file users.properties, one can move from UML-MX© to the XModelerML

or, in other words, from UML++ to a multi-level language that enables the
specification and execution of DSMLs.

C1

context Course

@Constraint NoLecturerAsStudent

 not self.regStudents().asSeq()->exists(i |

 i.roleFiller = self.getLecturer().roleFiller)

Fail

"Lecturer must not register as student."

C1
context Course

@Constraint NoLecturerAsStudent

 not self.regStudents().asSeq()->exists(i |

 i.roleFiller = self.getLecturer().roleFiller)

Fail

"Lecturer must not register as student."

C1

Delegation

Constraint

Constraint
Report

value returned from operation

slot value

link

Fig. 2. Screenshot of Diagram Editor within UML-MX©

.

4.1 Preliminary Results from Using the Tool

Object-oriented modeling with UML class diagrams has been taught by our
group for over twenty years. In recent years, we used MEMO4ADO, an enterprise-
modeling tool developed on the basis of the meta-modeling platform ADOxx,
as a modeling tool throughout the course [13]. It includes an editor for com-
mon UML class diagrams. Last semester, we used the XModelerML for teach-
ing object-oriented modeling. It still featured multi-level modeling concepts and
lacked UML notation. Students could use either MEMO4ADO or XModelerML.
Subsequently, they were asked to complete a survey on their experience with
using the tool as part of the assignment.

UML-MX© 9

Overall, we received mixed feedback from these first exploratory experiments
with students. On the one side, many noted that the tool was confusing especially
with respect to the offered multi-level concepts. On the other side, the instan-
tiation of models at run-time appeared to support students effectively in their
learning process. For one, creation of object diagrams seemed to be intuitive to
many students. Without any explicit prompt, students created objects already
in the first in-class assignment. Students noted that the creation of object dia-
grams provided valuable feedback on the correctness of the corresponding class
diagram. For example, modeling object diagrams clarified whether the multiplic-
ity of an association was suited for linking objects.

4.2 Related Work

Teaching object-oriented modeling is linked to the overarching goal of developing
abstraction skills [8]. Some researchers propose to focus more on modeling objects
than classes alone as a means to make students better understand the various
dependencies between classes and objects (e.g., [1] and [2]). As noted by [12],
UML modeling tools fail to adequately support modeling object and classes since
class and object diagrams are not well integrated. We conducted a preliminary
survey on current tool support for UML class and object diagrams. While some
consistency checks are often provided (e.g., class name in object corresponds to
the name of a class), they cannot imitate an executable run-time environment.
To the best of our knowledge, no self-standing modeling tool allows for the
specification and execution of operations within diagrams or validates constraints
on the object level.

5 Conclusions and Future Work

In retrospect, UML-MX© is the result of an unusual, yet fortunate coincidence of
technology push and demand pull forces. As a side effect, so to speak, our many
years of research on multi-level language architectures have resulted in the op-
portunity to realise a modeling tool that makes a clear difference to conventional
tools and promises considerable advantages, both in teaching and in practical
application. To the best of our knowledge, no other UML editor is available
that would allow for a common representation of class and object diagrams or
would even enable the execution of models without the need for code generation.
Preliminary results from using a predecessor of UML-MX© in modeling courses
indicate that the additional features implemented especially to support students
are suited to add further value. We also assume that using UML-MX© is suited
to serve as a door opener for appreciating higher levels of abstraction as they
are provided by multi-level language and model editors such as the XModelerML.
The smooth transition from the UML-MX© environment to the XModelerML

makes it all the easier to get started with multi-level modeling. Our future re-
search is aimed at adding other UML diagram types such as use case diagrams
and add further support for students and teachers. We also plan on conducting
more sophisticated experiments with UML-MX© in the future.

10 Ulrich Frank and Pierre Maier

References
1. Andrianoff, Steven K., Levine, David B.: Role Playing in an Object-Oriented World.

In: Gersting, J., Walker, H.M. (eds.) SIGCSE ’02: Proceedings of the 33rd SIGCSE
Technical Symposium on Computer Science Education, pp. 121–125 (2002)

2. Brinda, Torsten: Student Experiments in Object-Oriented Modeling. In: Cassel, L.,
Reis, R.A. (eds.) Informatics Curricula and Teaching Methods: IFIP TC3 / WG3.2
Conference on Informatics Curricula, Teaching Methods and Best Practice (ICTEM
2002), pp. 13–20. Springer, Berlin, Heidelberg (2003)

3. Frank, Ulrich: Multi-level Modeling: Cornerstones of a Rationale. Software and Sys-
tems Modeling 21, pp. 451—480 (2022)

4. Frank, Ulrich: Multilevel Modeling. Toward a New Paradigm of Conceptual Model-
ing and Information Systems Design. Business and Information Systems Engineering
6(6), pp. 319—337 (2014)

5. Frank, Ulrich, Clark, Tony: Multi-Level Design of Process-Oriented Enterprise In-
formation Systems. Enterprise Modelling and Information Systems Architectures
(EMISAJ) 17, pp. 1—50 (2022). DOI: 10.18417/EMISA.17.10

6. Clark, Tony, Frank, Ulrich, Gulden, Jens, Töpel, Daniel: An Extended Concept
of Delegation and its Implementation within a Modelling and Programming Lan-
guage Architecture. Enterprise Modelling and Information Systems Architectures
(EMISAJ), 21 (2024) .

7. Clark, Tony, Sammut, Paul, Willans, James: Applied Metamodelling: A Foundation
for Language Driven Development. 2nd edn. Ceteva (2008)

8. Engels, Gregor, Hausmann, Jan Hendrik, Lohmann, Marc, Sauer, Stefan: Teaching
UML Is Teaching Software Engineering Is Teaching Abstraction. In: Bruel, J.-M.
(ed.) Satellite Events at the MoDELS 2005 Conference: MoDELS 2005 Interna-
tional Workshop OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUI,
Nfc, MDD, WUsCaM, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected
Papers, pp. 306–319. Springer, Berlin, Heidelberg (2006)

9. Frank, Ulrich, Clark, Tony: Language Engineering for Multi-Level Modeling
(LE4MM): A Long-Term Project to Promote the Integrated Development of Lan-
guages, Models and Code. In: Font, Jaime, Arcega, Lorena et al. (eds): Proceedings
of the Research Projects Exhibition at the 35th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2023), pp. 97—104. CEUR, 3413
(2010)

10. France, Robert B., Rumpe, Bernhard: Model-driven Development of Complex Soft-
ware: A Research Roadmap. In: Briand, Lionel C., Wolf, Alexander L. (eds.): Work-
shop on the Future of Software Engineering (FOSE ’07). International Conference
on Software Engineering (ISCE 2007). pp. 37—54, IEEE CS Press

11. Atkinson, Colin, Kühne, Thomas: The Essence of Multilevel Metamodeling. In:
Gorgolla, Martin, Kobryn, Chris (eds.): UML 2001 - The Unified Modeling Lan-
guage. Modeling Languages, Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 1-5, 2001. Proceedings. LNCS, vol. 2185, pp. 19–33.
Springer, Heidelberg (2016)

12. Moisan, Sabine, Rigault, Jean-Paul: Teaching Object-Oriented Modeling and UML
to Various Audiences. In: Ghosh, S. (ed.) Models in Software Engineering: Work-
shops and Symposia at MODELS 2009, Denver, CO, USA, October 4-9, 2009. Re-
ports and Revised Selected Papers, pp. 40–54. Springer, Berlin, Heidelberg (2010)

13. Bock, Alexander, Frank, Ulrich, Kaczmarek-Heß, Monika: MEMO4ADO: A Com-
prehensive Environment for Multi-Perspective Enterprise Modeling. In: Model-
lierung 2022 Satellite Events, pp. 245–255 (2022)

