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ABSTRACT
This paper is a response to the MULTI 2022 Collaborative Compari-
son Challenge [23]. We compare FMMLx- and DLM-based solutions.
We first present each approach and solution separately, and then
discuss trade-offs of both the solutions and the approaches.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing; • Computing methodologies→Modeling methodologies.
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1 INTRODUCTION
Multi-level modeling (MLM) languages share similarities but also
differ drastically with respect to certain aspects. The “MULTI Collab-
orative Comparison Challenge” aims at supporting the appreciation
and understanding of such differences by inviting solutions to a
modeling challenge. Respective collaborations are meant to result
in a deepened understanding of the employed approaches [23].

This paper is a contribution to the challenge, presenting solu-
tions using the FMMLx [10, 11] and DLM [16, 17]. A solution to
this challenge with the FMMLx was already presented at MULTI
2023 [21]. The FMMLx solution in this paper is different in some
regards in part due to the use of new FMMLx constructs that were
not available in 2023 (see Section 2.1).

In this paper, we first provide brief characterizations of FMMLx
and DLM in Section 2 and then present respective solutions to the
domain challenge in Section 3. Subsequently, we analyze the key
commonalities and differences between the approaches, providing a
discussion of the respective pros and cons in Section 4 and conclude
with Section 5.
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2 MODELING APPROACHES
In this section, we characterize the two MLM approaches we used
to model our solutions.

2.1 FMMLX and XModelerML

The FMMLx is an object-oriented multi-level language; its core
modeling concepts are class and object. A class can have associ-
ations, attributes, operations, and constraints. Collectively, these
form the properties or alternatively features of a class. The FMMLx
is based on a meta-circular language architecture; all classes are
also objects and consequently have a state and are executable.

The meta-circularity of the FMMLx allows for the specification
of an arbitrary number of modeling levels. Objects can instantiate
properties from higher-level classes but can also, if the object pos-
sesses a class facet, inherit them. We refer to this combination of
instantiation and inheritance of properties as concretization [13].
We call each direct or indirect concretion of a class A its descendant
and class A inversely the ancestor. Each object in the FMMLx is
assigned a level value that reflects its concretization depth poten-
tial. Note that the concretization relationship of classes between
modeling levels does not exclude the specification of generaliza-
tion/specialization relationships within the same modeling level.
A special case of concretization applies between L1 classes and L0
objects. L0 objects cannot possess class facets and are therefore
pure instances (rather than concretions) of L1 classes.

Each property of a class is assigned a target level which specifies
the level at which the property is instantiated. This is referred to
as the instantiation level of a property and supports deferred instan-
tiation, since properties need not be instantiated at the immediate
level below their specification but can be instantiated further down
descendant chains [10, 12]. Associations may have association ends
with different target levels, enabling the specification of cross-level
associations and links.

The FMMLx is executable; operations and constraints have exe-
cutable bodies which are specified using the executable object con-
straint language (XOCL), a variant of the object constraint language
(OCL) [6, 7]. XModelerML, an executable modeling environment
that supports the FMMLx, provides a default notation that resem-
bles basic UML notation of classes. The XModelerML can be down-
loaded at https://www.wi-inf.uni-due.de/LE4MM/. The FMMLx and
XModelerML are described in more detail in [5–7, 10, 11].

Since the preceding MULTI challenge participation in 2023, the
FMMLx has been extended with new language constructs. Among
them are a more comprehensive version of contingent-level classes
and contingent-level properties (a first versionwas discussed in [13]),
association types, and association dependencies.

https://orcid.org/0000-0002-7674-2209
https://orcid.org/0009-0000-4594-6578
https://doi.org/10.1145/3652620.3688212
https://doi.org/10.1145/3652620.3688212
https://www.wi-inf.uni-due.de/LE4MM/


MODELS Companion ’24, September 22–27, 2024, Linz, Austria Thomas Kühne and Pierre Maier

Association types serve as a means to specify properties of asso-
ciations. An association type constrains the classes between which
associations may be created. It can also restrict the multiplicities of
associations belonging to one association type. Association types
moreover support a custom graphical notation of respective associ-
ations and links as illustrated in Figure 1.

The specification of an association dependency restricts the set of
valid links of the dependent association. If association AB, between
classes A and B, is dependent on an association CD, between classes
C andD, links of ABmay only be created if their respective ancestors
are linked via a CD link. Association AB may only be defined as
dependent on CD if C and D are either ancestors of or are identical
to A or B. Objects with links of AB must reside on the same or on a
lower modeling level than objects with links of CD.

2.2 DLM
Domain Level Modeling (DLM) originates from work on the or-
thogonal classification architecture (OCA) [3] that also gave rise to
Melanee/LML [20] and is based on the notion of a “clabject”, i.e., a
unification of “class” and “object” [2]. DLM supports an unbounded
number of classification levels and uses an order-alignment level
segregation principle [15]. Its deep instantiation approach is based
on characterizing classification potency [1, 14] and supports the
separation of domain-induced classification clusters [16, p. 551]. An
implementation of a formalization of DLM well-formedness rules
exists as a ConceptBase implementation [17].

Like FMMLx, DLM supports deep characterization via feature
potency [1, 2], and allows connections [8] to be deep and cross level-
boundaries. DLM connections may also connect elements from
different orthogonal ontological classification dimensions [16].

DLM is currently not associated with any particular constraint
language. In this paper, DOCL, a variant of OCL designed to support
multi-level models is used [19]. DLM does not specify an execu-
tion language either, but its well-formedness rules are designed to
support execution, e.g., not break client expectations [22].

3 CHALLENGE SOLUTIONS
Table 1 summarizes how the challenge requirements [23] were
addressed by each solution. Note that the table only captures the
summary points 1)–13) of the challenge and therefore does not
cover the fact that the challenge description elsewhere restricts
mobile phone factories to produce mobile phone devices only. Our
solutions nevertheless implement the latter requirement.

3.1 FMMLX Solution
The FMMLx solution model is shown in Figure 1. It distinguishes
between three layers of domain knowledge, which are separated
by layout (top, middle, bottom area) in Figure 1.

Generic Domain Knowledge. We identified three core concepts
from the challenge requirements: companies, factories, and devices.
L2 class Factory, L1 class Company, and L3 class DeviceModel serve to
represent these domain concepts at the top level respectively. The
level of each class follows from the required concretizations that
have be to performed. For example, L0 Factory124 is an instance of
L1 MobilePhoneFactory which is a concretion of L2 Factory.

Context MobilePhoneFactory , L1
@Constraint properSupport

self.supportedMobilePhone→ forAl l (device |
device.company = self.company)

fail
"Supported device model is not owned by company !"

end

Constraint F1: Proper Support

Two association types are defined: producesAssociationType and
supportsAssociationType. Associations of both types must associate a
direct descendant of Factorywith a direct descendant of DeviceModel.
The association types also specify a custom graphical notation of
association and links which is why supports associations and links
are pink/purple in Figure 1.

According to the challenge description, a company may specify
an IMEI prefix. The FMMLx solution assumes this information to be
optional which is why the attribute imeiPrefix has a multiplicity of
[0..1]. Since mobile phone factories depend on the presence of a pre-
fix value, the operation isImeiConstrained() in Factory checks whether
an IMEI prefix exists. This operation is used in MobilePhoneModel
to ensure that the IMEI of a mobile phone device begins with the
company’s IMEI prefix.

Specific Domain Knowledge. Specific domain knowledge refers to
types of factories and types of device models. In the FMMLx solu-
tion, the L1 class MobilePhoneFactory and the L2 class MobilePhone-
Model represent the respective types mentioned in the challenge
description. The produces association and the supports association
between MobilePhoneFactory and MobilePhoneModel conform to the
previously described association types.

The challenge description requires that a Huawei mobile phone
factory may only support Huawei mobile phone models (see re-
quirement 9) (a)). The DLM solution introduces the classes Huawei
Mobile Phone Factory and Huawei Mobile Phone Model and connects
both via a supports association (which is a restricted version of the
supports association between Factory and DeviceModel) to fulfill this
requirement. In contrast, the FMMLx solution forgoes such dedi-
cated classes for Huawei-owned factories and mobile phone models.
It treats a Huawei mobile phone factory as any mobile phone fac-
tory that is being owned by the company Huawei. This is one of the
reasons why the FMMLx requires fewer modeling elements than the
DLM solution. To satisfy requirement 9) (a), constraint F1 ensures
the validity of support links. The identifiers supportedMobilePhone
and company used in the constraint correspond to the user-defined
identifiers of objects referenced per link, which are not visible in
the diagram.

To ensure that a factory may only produce devices whose device
models it supports (see requirement 3) (c)), the association produces
is made dependent on the supports association. In Figure 1, this
is indicated by the expression depends on supports, which follows
the produces name of the association. In the 2023 solution [21], a
dedicated constraint had to be used. In this version, it is sufficient
to define the dependency; no custom constraint must be written by
the modeler.

To satisfy requirement 9) (c), constraint F2 checks whether the
IMEI number of a mobile phone device begins with the IMEI prefix
of its producing company.

https://conceptbase.sourceforge.net/mdm-er2023/
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Requirement FMMLx DLM
1) A company has (a) a name, (b) owns
factories, (c) owns device models

Company has (a) a companyName attribute and
two owns associations, one to (b) Factory and one
to (c) DeviceModel

Company (C1) has (a) a name attribute and two
owns associations, one to (b) Factory and one
to (c) DeviceModel

2) Huawei is a (a) company that (b)
owns Factory124 and (c) owns mobile
phone models S400 and S500

(a) Huawei is an instance of Company, (b) has a
link to Factory124 and (c) has two links to the
mobile phone models S400 and S500

(a)Huawei is an instance of Company (b) has an
owns link to Factory124, and (c) has two owns
links to the Huawei phone models S400 & S500

3) A factory (a) produces devices, (b)
supports a list of device models, (c) can
only produce devices that conform to
(are of) supported device models

Two association types between Factory and De-
viceModel enable (a) production associations and
(b) support associations. (c) An association depen-
dency between produces and supports restricts the
production of devices to supported device models.

(a) Factory (F1) has a produces association to
Device, and (b) has a supports association to
Device Model. (c) Alignment of production of
devices with supported models is realized by
Constraint D2

4) A device conforms to a devicemodel Devices are instances of device models Devices are instances of device models
5) A devicemodel captures what is uni-
versal about the devices it describes

L1 device models serve as types for L0 devices Device models (P1) are types for devices (P0)

6) A mobile phone model (a) allows
specific RAM size options and (b) is a
device model

(a) MobilePhoneModel has an attribute allowe-
dRamSizeInGB which is populated by mobile
phone models on L1. (b) MobilePhoneModel is a
concretion of DeviceModel

(a) Mobile Phone Model declares RAMoptions
which is populated by mobile phone models,
(b)Mobile Phone Model specializesDevice Model

7) A mobile phone device (a) conforms
to a mobile phone model, (b) has an
IMEI and (c) has a RAM size

(a) L0 Mobile phone devices are instances of L1
mobile phone models which are concretions of L2
MobilePhoneModel. MobilePhoneModel includes
the attributes (b) imei and (c) ramSizeInGB

(a) Mobile phone devices are instances of mo-
bile phone models which are in turn subtypes
of Mobile Phone Device, the latter mandates an
(b) IMEI number and a (c) RAM size via features

8) A mobile phone factory supports
mobile phone models only

Association supports between MobilePhoneFac-
tory andMobilePhoneModel has no generalization
that needs restricting

Association specialization is used to restrict the
support of Mobile Phone Factory instances to
Mobile Phone Model instances

9) A Huawei mobile phone factory (a)
supports Huawei mobile phone mod-
els only, (b) keeps track of mobile
phone devices it produced, and (c) con-
strains the IMEI of the mobile phone
devices produced by the factory to
start with ‘001’

(a) The constraint properSupport restricts support
of mobile phone factories to mobile phone mod-
els owned by the same company. (b) A mobile
phone factory returns the number of produced
phones via numberOfProducedMobilePhone(). (c)
Company has attribute imeiPrefix. Huawei defines
it as “001”. Constraint properImei checks whether
mobile phone device IMEIs start with the IMEI
prefix of the linked company object.

(a) Association specialization is used to restrict
the support of Huawei Mobile Phone Factory
instances to Huawei Mobile Phone Model in-
stances, (b) Huawei Mobile Phone Factory has
a respective produces association, (c) Huawei
(C0) defines the prefix “001” which is accessed
in IMEI in Huawei Mobile Phone Device

10) Factory124 (a) is a factory, (b) sup-
ports Huawei S400 and S500 mobile
phone models, and (c) produced two
S400 devices (S400_001, S400_002)

(a) L0 Factory124 is a descendant of L2 Factory,
(b) has supports links to S400 and S500 (c) and
produces links to s400_001 and s400_002

(a) Factory124 (F0) is an indirect instance of Fac-
tory (F1), has (b) supports links to S400 & S500
and (c) produces links to S400_001 & S400_002

11) S400 (a) is a mobile phone model
and (b) has either 4GB or 8GB of RAM

(a) S400 is a concretion of MobilePhoneModel and
defines a sequence of ram options containing the
values 4 and 8.

(a) S400 is an indirect instance of Mobile Phone
Model and (b) defines a RAMoptions list con-
taining the 4GB and 8GB options

12) S400_001 (a) is a mobile phone de-
vice, (b) conforms to the S400 model,
(c) has 4GBs of RAM, and (d) has
‘001468723648726’ as its IMEI

(a) L0 S400_001 is a descendant of L2 Mobile-
PhoneModel and (b) an instance of L1 S400. It spec-
ifies the values for ram in ramSizeInGB and for
IMEI in imei.

S400_001 is (a) an indirect instance of Mobile
Phone Device, (b) an instance of S400, (c) chooses
option 1 (4GB) of RAMoptions, and (d) specifies
the IMEI suffix following “001” via its id value

13) S400_002 (a) is a mobile phone de-
vice, (b) conforms to the S400 model,
(c) has 8GBs of RAM, and (d) has
‘0018768768475638’ as its IMEI

(a) L0 S400_002 is a descendant of L2 Mobile-
PhoneModel and (b) an instance of L1 S400. It spec-
ifies the values for ram in ramSizeInGB and for
IMEI in imei

S400_002 is (a) an indirect instance of Mobile
Phone Device, (b) an instance of S400, (c) chooses
option 2 (8GB) of RAMoptions, and (d) specifies
the IMEI suffix following “001” via its id value

Table 1: Requirements of the challenge and their realization in FMMLx and DLM
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^MobilePhoneModel^

1 S500

imei: String[1] (from MobilePhoneModel)0

ramSizeInGB: Integer[1] (from MobilePhoneModel)0

0 getDeviceModelName(): String (from DeviceModel)

0 getDeviceName(): String (from DeviceModel)

0 prettyRam(): String (from MobilePhoneModel)

allowedRamSizeInGB = Seq{2,4,8}

getModelName()-> S500

^MobilePhoneFactory^

0 Factory124

numberOfProducedMobiledPhones()-> 2

getFactoryName()-> Factory124

getFactoryTypeName()-> MobilePhoneFactory

isImeiConstrained()-> true

^Factory^

1 MobilePhoneFactory

0 numberOfProducedMobiledPhones(): Integer

0 getFactoryName(): String (from Factory)

0 getFactoryTypeName(): String (from Factory)

0 isImeiConstrained(): Boolean (from Factory)

properSupport0

^MetaClass^

1 Company

companyName: String[1]0

imeiPrefix: String[0..1]0

^Company^

0 Huawei

companyName = Huawei

imeiPrefix = 001

^MetaClass^

3 DeviceModel

1 getModelName(): String

0 getDeviceModelName(): String

0 getDeviceName(): String

^DeviceModel^

2 MobilePhoneModel

allowedRamSizeInGB: Integer[1..*]1

imei: String[1]0

ramSizeInGB: Integer[1]0

0 prettyRam(): String

1 getModelName(): String (from DeviceModel)

0 getDeviceModelName(): String (from DeviceModel)

0 getDeviceName(): String (from DeviceModel)

properIMEI0

properRAM0

^S400^

0 S400_002

imei = 0018768768475638

ramSizeInGB = 8

getDeviceModelName()-> S400

getDeviceName()-> S400_002

prettyRam()-> 8 GB

^S400^

0 S400_001

imei = 001468723648726

ramSizeInGB = 4

getDeviceModelName()-> S400

getDeviceName()-> S400_001

prettyRam()-> 4 GB

^MetaClass^

2 Factory

0 getFactoryName(): String

0 getFactoryTypeName(): String

0 isImeiConstrained(): Boolean

^MobilePhoneModel^

1 S400

imei: String[1] (from MobilePhoneModel)0

ramSizeInGB: Integer[1] (from MobilePhoneModel)0

0 getDeviceModelName(): String (from DeviceModel)

0 getDeviceName(): String (from DeviceModel)

0 prettyRam(): String (from MobilePhoneModel)

allowedRamSizeInGB = Seq{4,8}

getModelName()-> S400

Figure 1: FMMLx solution model

Context MobilePhoneModel , L2
@Constraint properIMEI

self.producingMobilePhoneFactory.isImeiConstrained () ⇒ self.
imei→truncate(self.producingMobilePhoneFactory.company.
imeiPrefix→size()) = self.producingMobilePhoneFactory.
company.imeiPrefix

fail
"The IMEI does not start with the company 's prefix !"

end

Constraint F2: Proper IMEI

Valid RAM sizes are ensured via a sequence of RAMvalue options
that must be specified by each mobile phone model (cf. attribute

allowedRamSizeInGBwith multiplicity [1..*]) and Constraint F3 which
checks that a mobile phone’s specified RAM size of a mobile phone
device is a member of the allowed RAM values of its model.
Context MobilePhoneModel , L2
@Constraint properRAM

self→of().allowedRamSizeInGB→exists(ramSize |
ramSize = self.ramSizeInGB)

fail
"RAM size does not correspond to mobile -phone model
specification !"

end

Constraint F3: Proper RAM
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Particular Exemplars. One may designate the term “exemplar” to
those elements of a domain that are deemed to constitute a particu-
lar modeling scenario, rather than belonging to a generic domain
characterization. Here, the company Huawei, its factory Factory124,
which produces devices S400_001 and S400_002, and supports models
S400 and S500 can be considered to be such exemplars. Modeling
these is straightforward since their domain types are already speci-
fied on higher modeling levels.

In contrast to the MULTI 2023 solution [21], and to the DLM solu-
tion, the exemplars are enhanced with a domain-specific graphical
notation (see Figure 2). This alternative visualization is intended to
improve the readability of the model and illustrates the use of the
XModelerML’s Concrete Syntax Wizard. The FMMLx meta model
specifies that each object has a name; “DeviceModel”, for example,
is the name of L3 DeviceModel. To improve the readability of the
domain-specific graphical notation, it is sometimes useful to ac-
cess the name of an object or its type. This allows, e.g., to display
the name “MobilePhoneFactory” and “Factory124” in Figure 2. To
enable this, the FMMLx solutions adds operations to DeviceModel
and Factory that return the name of respective descendants. The
implementation for these operations is straightforward. Here, we
only present one example which retrieves the direct ancestor of self
via of() and returns the value of the name attribute:
Context DeviceModel , L3

@Operation getDeviceModelName ():XCore:: String

self→of().name

end

3.2 DLM Solution
The DLM solution model, shown in Figure 3, is structured in three
main parts, so-called classification dimensions: “C” (Company), “F”
(Factory), and “P” (Product), each featuring its own level hierarchy
(e.g., P0–P2 within in the “P” dimension). The underlying concept
is that a domain scenario often contains so-called classification
clusters – in the example they are formed by company-, factory-,
and product concerns – which give rise to separate classification
hierarchies, each with its individual hierarchy depth [16]. Note that
unlike the product hierarchy, the company and factory hierarchies
only require two levels each.

DLM supports orthogonal ontological classification [16], i.e., al-
lows classification dimensions to overlap in the sense that a single
element can be classified simultaneously by more than one dimen-
sion. Since the domain scenario of the challenge does not feature
any overlapping classification, the solution uses multiple classifi-
cation hierarchies for their organizational effect only. Each of the
three classification hierarchies “C”, “F”, and “P” enforces local well-
formedness rules on the elements within a hierarchy but allows
unrestricted inter-hierarchy connections to other hierarchies [16].

Although the restrictions on IMEIs and available RAM sizes are
commonly realized via constraints (cf. constraints F2 & F3), the DLM
solution opts to use a “correct-by-construction” approach: P1-level
element Huawei Mobile Phone Device redefines the IMEI signature
declaration with an operation IMEI that constructs the IMEI value
for Huawei mobile phone devices by prefixing their (IMEI-) ids with
a value (“001”) obtained from C0-level element Huawei1. Likewise,

1The 2022 solution stored this prefix at Huawei Mobile Phone Factory, not ex-
ploiting the fact that the prefix must be the same for all Huawei-owned factories [18].

a mobile phone device specifies its RAM size via selecting one of
the valid options available from its corresponding mobile phone
model. In Figure 3 the mobile phone model S400 makes the options
“4GB” and “8GB” available. The actual RAM size of a mobile phone
device (e.g., S400_001) is then determined by evaluating operation
RAM, defined in Huawei Mobile Phone Device, which references the
RAM option value of S400_001 (option = 1) and uses it to index the
available RAM options defined in S400. In summary, instances at the
bottom level select one of many valid options which leads to overall
properties whose form meets the requirements by construction.

Note that clabject potency and feature potency values default to
the level of their enclosing clabject and are only explicitly specified
if they are needed to restrict the instantiation depth of a clabject or
feature. This is the case for RAMoptions at level P2 which would
otherwise be interpreted as a deep field whose value assignments
would occur at level P0.

It is of note that in terms of the domain’s exemplars (cf. Sec-
tion 3.1) the DLM solution exactly coincides with the FMMLx solu-
tion regarding the names of modeling elements and their relation-
ships. The differences between the solutions comprise

(1) a naming difference between P2 Mobile Phone Model & L2
MobilePhone. The latter FMMLx concept is the direct ancestor
ofmobile phonemodels, hence the correspondingDLMname
(cf. Section 4.1).

(2) the presence of ownership-related concepts (Huawei Mobile
Phone Factory & Huawei Mobile Phone Model), which has al-
ready been explained in Section 3.1 (also see Section 4.7).

(3) the presence of three additional supertypes (Huawei Mobile
Phone Device & Mobile Phone Device & Device).

(4) higher level placements of Factory & DeviceModel in the
FMMLx solution.

Regarding (3), these supertypes are technically not required and
could be replaced with respective deep feature declarations in cor-
responding P2 elements. They have been included, despite causing
the need for constraint D1, because

• they support natural domain relationships such as the pro-
duces association between Factory and Device (which would
have otherwise required a FactoryType conceptwith an higher-
order association to DeviceModel),

• they allow the restriction of association end domains (be-
tween Mobile Phone Factory and Mobile Phone Device) through
the use of “association inheritance” [25], thus forgoing the
need for a respective constraint (cf. Section 4.7).

The aforementioned constraint needs to ensure that Huawei Mobile
Phone Model instances are subtypes of Huawei Mobile Phone Device
(cf. constraint D1). If that were not enforced then the second-order
instances of Huawei Mobile Phone Model, i.e., actual Huawei mobile
phone devices, would not have to conform to the stipulations made
in the specialization hierarchy that has Huawei Mobile Phone Device
at its bottom. See Section 4.7 for a further discussion.

context Huawei Mobi le Phone Model
inv : s e l f . # ge tSuperTypes ( ) # → c o l l e c t ( # name # )

→ includes ( " Huawei Mobi le Phone Device " )

Constraint D1: Linking devices with models
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produces

produces
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owns

1
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0

0produces

1

0..*

0

0

owns

1

0..*

0

1
supports

1

0..*

0
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S500

Factory124
MobilePhoneFactory

^Factory^

1 MobilePhoneFactory

0 numberOfProducedMobiledPhones(): Integer

0 getFactoryName(): String (from Factory)

0 getFactoryTypeName(): String (from Factory)

0 isImeiConstrained(): Boolean (from Factory)

properSupport0

^MetaClass^

1 Company

companyName: String[1]0

imeiPrefix: String[0..1]0

Huawei
001

^MetaClass^

3 DeviceModel

1 getModelName(): String

0 getDeviceModelName(): String

0 getDeviceName(): String

^DeviceModel^

2 MobilePhoneModel

allowedRamSizeInGB: Integer[1..*]1

imei: String[1]0

ramSizeInGB: Integer[1]0

0 prettyRam(): String

1 getModelName(): String (from DeviceModel)

0 getDeviceModelName(): String (from DeviceModel)

0 getDeviceName(): String (from DeviceModel)

properIMEI0

properRAM0

0018768768475638

8 GBS400
S400_002 001468723648726

4 GBS400
S400_001

^MetaClass^

2 Factory

0 getFactoryName(): String

0 getFactoryTypeName(): String

0 isImeiConstrained(): Boolean

S400

Figure 2: Domain-specific graphical notation in FMMLx solution

Regarding (4), the DLM solution has no need for a type for Mo-
bilePhoneFactory, such as L2 Factory (which would have been named
FactoryType in the DLM model). Instead, a generalization of Mobile-
PhoneFactory in the form of P1 Factory was used. Likewise, the DLM
solution simply generalizes Mobile Phone Model to Device Model at
P2 rather than introducing a type for it (cf. L3 DeviceModel in the
FMMLx solution which would have had to be named DeviceMod-
elType in a DLM model). See Section 4.6 for the motivation of the
aforementioned higher-level elements in the FMMLx solution.

Since DLM does not support association dependencies, require-
ment 3) (c) (see Table 1) had to be addressed via constraint D2.
context Fa c t o r y
inv : s e l f . p roduces → forAl l ( d e v i c e |

s e l f . s uppo r t s → includes ( d e v i c e . # g e tD i r e c tType s ( ) #→ f i r s t ( ) ) )

Constraint D2: Factory supported devices

4 DISCUSSION
In this section, we compare the two solutions, highlighting simi-
larities and differences of both the solutions and approaches, and
discuss the respective trade-offs.

4.1 Clabjects
Both approaches support elements that combine an instance and
a (deep) type facet, i.e., modeling elements that have been dubbed
“clabjects”. Clabjects with classifier roles have different meanings in
the approaches, though. FMMLx classes have descendants where
the difference between immediate (first-order) descendants and
more remote (higher-order) descendants is de-emphasized due to
the dual nature of the concretization between FMMLx classes. In
contrast, DLM distinguishes between direct (first-order) instances,
indirect instances (which are first-order as well, but are classified by
more specific (sub-) types), and deep (higher-order) instances, i.e., in-
stances of instances, etc. DLM clabjects therefore retain traditional
class-instance relationships that can be mapped to “membership”-
relationships in the domain, whereas the underpinning of FMMLx
classes challenges the utility of this traditional approach.

These different class roles have implications on class naming
conventions. DLM clabject names should always describe their first-
order instances, e.g., the name of clabject Factory at F1 describes

Factory124 at F0 as a “factory” (see Figure 3). In FMMLx, the modeler
has the freedom to use a class name to reference any of the de-
scendant levels. In Figure 1, L2 class MobilePhoneModel describes its
immediate descendants (S400 & S500) but L2 class Factory describes
its second-order descendant (Factory124). If the former described
its immediate descendant (MobilePhoneFactory), it would have to
be named FactoryType. Note that an FMMLx user may impose any
convention on themselves and also adopt the DLM naming scheme
but this may not always work out when a concretization is meant
to simultaneously represent classification and generalization.

4.2 Level Concept
Both FMMLx and DLM require elements to be manually assigned
to levels, i.e., each element has a “level” value that associates it with
a particular level within the hierarchy. As an exception to this rule,
FMMLx features so-called “contingent-level classes” allowing such
classes to specify multiple levels [13]. Level membership in FMMLx
is visualized via color-coding of the name compartments, along
with an explicit level number at the left-hand side of the name
compartment. DLM has no codified presentation specification but
common presentation conventions include the use of horizontally
dashed lines to indicate level boundaries or the use of different
color-shaded backgrounds to separate levels. In both cases, the
areas between levels are often labeled with a letter that features
the level number as an index (cf. C1 in Figure 3).

In both approaches, generalization relationships, i.e., pure gen-
eralization relationships in the case of FMMLx, are intra-level rela-
tionships. Since in both approaches inter-level relationships always
have an element of classification, the insertion of a new intermedi-
ate level is never possible without having significant ramifications
on existing elements.

Both approaches allow associations to cross level boundaries.
However, only FMMLx supports association ends with different
concretization depths in the style of dual potencies [24].

DLM has a homogeneous level hierarchy, while the L1→L0 level
boundary in FMMLx, unlike any other level boundary, only allows
instance-of relationships, i.e., excludes concretization relationships.
FMMLx levels are order-synchronized, i.e., an element’s level cor-
responds to its concretization depth potential, whereas DLM lev-
els are order-aligned [15]. Due to these different level-segregation
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Figure 3: DLM solution model
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principles, concepts like Factory may end up at different levels in
comparable FMMLx and DLM models. For instance, L2 class Factory
in Figure 1 is modeled as a level one element in Figure 3, satisfy-
ing the traditional desire to claim that Factory124 is an (indirect)
instance of Factory. Conversely, L3 class DeviceModel in Figure 1
could have been modeled as a level two element (cf. GenericDevice
in [21]), were it not for an association type (not shown in Figure 1).

4.3 Language-supported Sanity Checks
Models can be complex, in particular larger models of inherently
complex domains that especially benefit from the use of MLM tech-
nology. Particularly, but not exclusively, models that have multiple
authors can be prone to contain conceptual fallacies or exhibit
inconsistencies of various kinds [4, 9].

Many languages specify integrity constraints which are enforced
by tools that help to ensure basic levels of soundness, such as that
instances actually conform to their types or definitions are cycle-
free. Due to the aforementioned complexity of models or sometimes
simply due to the inexperience of modelers to work with multi-level
hierarchies, it is desirable to provide modelers with feedback on
their models that goes beyond such traditional checks. For instance,
it is possible to identify anti-patterns for conceptual models that are
not intended to uncover questionable but potentially still correct
model fragments, but rather detect model fragments that violate
fundamental well-formedness expectations [4].

To that end, DLM leverages its strict distinction between classifi-
cation and generalization in order to alert users when their models
make mutually incompatible claims. For instance, the historical
Wikidata problem of Tim Berners-Lee ending up being categorized
as a Profession [4] – based on the simultaneous claims that Tim
Berners-Lee is an instance of Scientist, Scientist is an instance of Pro-
fession, and Scientist “isA” (here meaning “is a subtype of”) Profession
– cannot occur within a DLMmodel since the respective network of
relationships does not satisfy DLM well-formedness rules [16, 17].
In the above scenario – now removed from Wikidata which never-
theless still contains numerous analogous or otherwise inconsistent
claims [9] – Tim Berners-Lee is claimed to be a second-order instance
of Profession (via Scientist as an instance of Profession) and an indirect
first-order instance of Profession (via Scientist as a specialization of
Profession), which is a logical contradiction. This is just a simple
example, the DLM well-formedness rules cover a wide range of
potential problems that exceeds the range covered by the three
anti-patterns defined in [4].

The sanity checking of some aspects of conceptual model sound-
ness are only possible because DLM differentiates between tran-
sitive specialization relationships and intransitive classification
relationships, and requires models to have a sound set-theoretic
interpretation. In contrast, FMMLx does not support these kinds of
sanity checks since the inter-level relationship, concretization, lacks
the specificity to support the detection of such modeling flaws.

Since concretization is a mixture of instantiation and special-
ization, the “descendant-of” relationship can be considered to be
transitive. Sometimes, this aligns with intuition, e.g., in case of
Factory124 and Factory where it is possible to claim that the former
is an indirect “instance” of the latter. However, sometimes the same
kind of reasoning does not yield the desired result, e.g., regarding
the chain of relationships between S400_1 and DeviceModel, which

equally allows one to consider the former to be an indirect “in-
stance” of the latter. Note that choice of class names is important;
the FMMLx solution model adopts terminology from the challenge
description and is not meant to suggest counter-intuitive inferences
such as the one above. Consequently, one one should refrain from
reading the transitive descendant hierarchy of an FMMLx model
with a traditional understanding of intransitive classification and
indirect instance-of relationships as presented here.

4.4 Separation of Modeling Concerns
As mentioned before, multi-level models can be complex and thus
challenging to manage. The respective complexity can sometimes
be partially harnessed by structuring mechanisms, or even just
strategies without formal support that support navigability and
readability of multi-level models. For example, the requirements
of the challenge (cf. Table 1) may be interpreted as implying the
interrelated subdomains of companies, factories, and products.

Such a division of the domain into subdomains can be exploited
in DLM to structure the solution accordingly with respective classifi-
cation dimensions (cf. Figure 3). DLM therefore effectively supports
a separation of modeling concerns [16]. While the primary use for
separate classification dimensions is to cleanly handle overlapping
classifications, the same approach can also be used for structuring
domains that do not require any form of multiple classification, as
is the case with the challenge domain.

The FMMLx supports separation of concerns by two means.
First, XModelerML allows for the specification of views. Views are
user-defined dissections of diagram content. Such dissections do
not imply any semantics or well-formedness restrictions. Views
are separated via layout, similar to the three layers of domain
knowledge used for the description of the FMMLx solution. Second,
XModelerML allows for the specification of multiple diagrams for
one model, with “diagram” being understood as a visual representa-
tion of a model. Modeling elements can be specified in one diagram
and used in another.

4.5 Deep Characterization
Both approaches allow classes to define features of higher-order
instances. They both attach non-negative integers to features to
control at which level the feature will be instantiated.

The difference between the respective mechanisms – deferred
instantiation (FMMLx) versus deep instantiation (DLM) respectively
– is essentially the difference between an absolute target-level spec-
ification (FMMLx) and a relative target-level specification (DLM).
FMMLx features, whose target level is lower than the immediate
level below, are thought of as being inherited by concretions (as
the absolute target level remains unchanged upon concretization)
while features with a target level matching the level below are
instantiated at that level below. Hence the level heterogeneity of
FMMLx (see Section 4.2) is mirrored by a heterogeneous treatment
of features. In contrast, DLM features are always instantiated by
an instance, in analogy to how a UML attribute is instantiated into
a UML slot. DLM does not distinguish between attributes and slots;
an attribute corresponds to a potency-one feature and a slot corre-
sponds to a potency-zero feature, and feature potencies decrease
exactly by one upon each instantiation.



FMMLx and DLM MODELS Companion ’24, September 22–27, 2024, Linz, Austria

DLM feature potency values default to the level of the enclosing
clabject, i.e., in the absence of any explicit user-assigned feature
potency values, the respectivemeaning is equivalent to a target level
specification of zero in FMMLx. This blurs the difference between
the two level-targeting styles as in neither case manual adaptation
would be required if the element were assigned a different level but
the features were still intended to instantiate at level zero. Partly for
this reason, it is difficult to assess which style – absolute vs relative
specifications – is more robust against change in practice. Whether
deferred instantiation and deep instantiation differ with respect
to intuitiveness and model understanding is difficult to assess and
would have to be established through empirical studies.

4.6 Relationships between Associations
Relationships between associations in the solutions are used for
the following purposes:

(1) restricting the domain of association ends.
(2) making links contingent on the presence of other links.
(3) supporting a custom concrete syntax.

Regarding (1), the challenge description restricts mobile phone fac-
tories to produce mobile phone devices only. The DLM solution
explicitly models the fact that factories in general may produce
any device in general and therefore needs to restrict the kinds of
devices a mobile phone factory may produce to mobile phone de-
vices only. It accomplishes that by using association inheritance as
known from the UML [25] (see how association produces between
Mobile Phone Factory and Mobile Phone Device specializes association
produces between Factory and Device in Figure 3). The FMMLx solu-
tion accomplishes the same by i) not using a produces association
between Factory and DeviceModel in the first place, and ii) using
an association type to restrict produces links to allow connecting
mobile phone factories with mobile phone devices only.

Regarding (2), requirement 3) (c) (cf. Table 1) restricts produces
links between a particular factory and the devices it produced to
those where corresponding supports links exist between the partic-
ular factory (here Factory124) and the device model of the devices
(here S400). In other words, the validity of certain links is made
contingent on the presence of other links. Specifically, the links
do not need to be related, e.g., via a deep association hierarchy.
The FMMLx solution uses a dependency relationship between the
produces and supports associations between MobilePhoneFactory and
MobilePhoneModel (see the “produces depends on supports” association
in Figure 1 which textually indicates the presence of the depen-
dency relationship). Association dependencies were recently added
to the FMMLx since the kind of dependencies between links that
occurs between produces and support links had been observed to
be a commonly occurring pattern in FMMLx models. DLM has no
such dedicated support yet which is why the DLM solution has to
employ constraint D2 to enforce requirement 3) (c).

Regarding (3) above, the FMMLx solution uses association types
for the specification of a custom graphical notation of produces and
supports associations and links.

Association types could have also been used to specify the mul-
tiplicities of produces and supports associations, but those were not
stipulated by the challenge requirements. The respective DLM so-
lution would have relied on deep connections [8] for this purpose.

4.7 Need for Constraints
Textual constraints, as expressed in OCL, for instance, are some-
times necessary to realize integrity conditions of models. They
should be regarded as a last resort, however, since

(1) visual counterparts are readily identifiable in a diagram.
(2) equivalent language constructs are easier to use and,
(3) are likely to be more robust against model changes.
(4) textual constraints are more error prone to write, and
(5) they are not as amenable to a reader of the model as standard

notation is.
In total, the FMMLx solution uses three constraints (constraint F1–
F3). The last two, regarding the validity of IMEIs and RAM configu-
rations, should not be counted in a tally against the DLM solution,
though, because the FMMLx could have used the same “correct-by-
construction” approach of the DLM solution as well.

This leaves constraint F1 which has no equivalent constraint in
the DLM solution, since the latter employs association inheritance
between the two lower supports associations in Figure 3.

In turn, the DLM constraint to realize requirement 3) (c) (cf. con-
straint D2), is more concisely and robustly replaced by the FMMLx
association dependency (see Section 4.6). Note that constraint D2
uses a hard-coded “Huawei Mobile Phone Device” string literal to
perform a test. Tools are unlikely to pick up on such model element
name dependencies within constraints when they ideally should
alert users in case the respective model element is renamed.

The second, and last, DLM constraint is required because DLM
currently lacks a “powertype” relationship between a generaliza-
tion and its “powertype” (cf. constraint D1). It would have been
possible to avoid the need for this constraint by lifting all the stipu-
lations made by P1-supertypes to the corresponding P2-elements,
making them deep features, but the resulting model would not have
been as accessible and it would not have been as easy to see the
correspondence to the requirements.

4.8 Executability
The FMMLx is a monotonic extension of XCore, which is part of
the executable meta-modeling facility (XMF) and therefore readily
supports model execution [5–7]. The XModelerML includes a just-
in-time compiler that supports the instantiation of models and
the execution of the respective model instances. The executable
object constraint language (XOCL) is used to specify constraints
and operations in the XModelerML [6, 7].

DLM has no associated execution language yet but is designed
with execution and constraint evaluation in mind. Operations are
features, for instance, and specialization relationships in DLM
should obey the Liskov substitution principle [22].

4.9 Modeling Notation
Both approaches have a graphical notation that resembles the con-
crete syntax of the UML.

Unlike DLM constraints, FMMLx constraints are explicitly fea-
tured in diagrams in the form of class features, e.g., see feature
properSupport in MobilePhoneFactory in Figure 1.

Additionally, the XModelerML includes a Concrete Syntax Wizard
that allows users to specify a domain-specific graphical notation.
The Concrete Syntax Wizard supports accessing values of objects
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so that objects can be supplied with a value-dependent notation (cf.
Figure 2). Within the XModelerML, it is then possible to dynamically
switch between the domain-specific graphical notation and the
standard FMMLx notation. FMMLx association types have no visual
presentation and therefore do not appear in FMMLx diagrams.

The DLM solution uses explicit visual instance-of relationships to
connect ontologically-typed instances to their types. Alternatively,
it would have been possible to use a “typed element name” approach,
e.g., to use “Huawei : Company” in the name compartment of Huawei
at C0. For this solution, using visual relationships was deemed to
yield better trade offs. The colored backgrounds in Figure 3 are in
part supported by the ConceptBase implementation of DLM [17,
Fig. 5]. This implementation does not support the vertically stacked
shaded backgroundswithin classification concerns of Figure 3; these
are currently manually created, but could technically be enforced
to coincide with the level values of the elements populating them.

5 CONCLUSION
We presented two solutions to the MULTI Collaborative Compar-
ison Challenge modeled using the MLM approaches FMMLx and
DLM. The comparison is particularly instructive because the ap-
proaches use distinctively different level concepts. As expected,
the bottom-level elements in the solutions are effectively identical
with the exception of minor realization differences. The solutions
furthermore share similarities regarding higher levels, but the use
of association types pushed some FMMLx elements up a level, and
the different underlying level segregation principles led to some
naming differences as well. Some further discrepancies between
the solutions were caused by different stylistic choices – e.g., how
to ensure value integrity and whether or not to explicitly represent
core domain generalizations – but some were the result of different
underlying modeling philosophies. DLM aims to support the con-
struction of ontologically correct models, i.e., encourages modelers
to establish a direct mapping between natural domain concepts and
corresponding model elements. It requires a sound set-theoretic
interpretation of the models to exist so that it can provide modelers
with feedback in case they create contradictory model fragments.
FMMLx, on the other hand, follows a pragmatic/constructivistic
approach. Models created with the FMMLx are not meant to rep-
resent truthful representations of a given domain. Rather, FMMLx
aims at supporting a purpose-driven linguistic reconstruction of a
domain.

Interestingly, the layout choices for the FMMLx diagram em-
phasize layers of domain specificity, while the DLM diagram em-
phasizes the cohesion of concepts at the same logical classification
level. It might be useful to support both alternatives via respective
views or complementing diagrams.

In terms of lessons learned, the challenge has reinforced the
utility a native powertype relationship would have in DLM and
that incorporating the equivalent of an association dependency
construct would be very useful. The challenge furthermore empha-
sized the need to reflect upon interpretations of transitivity within
FMMLx models andmechanisms to prevent counter-intuitive model
interpretations.
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