UML++: Enhancing Student Learning of Object-Oriented
Modeling through Executable Objects

Pierre Maier
pierre.maier@uni-due.de
University of Duisburg-Essen
Essen, Germany

Abstract

Motivated by the importance of object-oriented modeling in ed-
ucation, we introduce UML++, an object-modeling language that
supports instantiation and execution of object models at run time.
UML++ is complemented by a modeling tool, UML-MX®, that aims
at improving the learning of object-oriented modeling by making
modeling more tangible and engaging for students. We outline eight
requirements for UML-MX® and present its core features with a
focus on the components tailored to levitate learning experiences.
A preliminary evaluation indicates that UML-MX® is able to meet
most requirements and may significantly aid students in the ap-
preciation and comprehension of object-oriented modeling. Future
work will focus on further evaluating the tool’s effectiveness in a
course setting, refining current features for broader educational use,
and expanding its support to other areas of conceptual modeling.

CCS Concepts

«+ Applied computing — Interactive learning environments; «
Software and its engineering — Object oriented development;
Abstraction, modeling and modularity; Unified Modeling
Language (UML).

Keywords
UML, Multi-level Modeling, Modeling Education, Modeling Tool

ACM Reference Format:

Pierre Maier and Tobias Schwarz. 2024. UML++: Enhancing Student Learn-
ing of Object-Oriented Modeling through Executable Objects. In ACM/IEEE
27th International Conference on Model Driven Engineering Languages and
Systems (MODELS Companion ’24), September 22-27, 2024, Linz, Austria.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3652620.3687777

1 Introduction

Object orientation has profoundly shaped the landscape of mod-
ern software development, providing powerful language concepts
that may extend across the entire software life cycle [26, p. 22].
Central to object-oriented development are object models. They

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687777

Tobias Schwarz
tobias.schwarz.1@stud.uni-due.de
University of Duisburg-Essen
Essen, Germany

support communication and coordination within software develop-
ment projects and can serve as a “thinking tool used to aid in the
formalization of knowledge” [33, p. 7]

Object-oriented modeling has played an important part in Com-
puter Science (CS) and Information Systems (IS) education for long
[12]. The most recent competency models for CS education (jointly
published by the ACM, IEEE, and AAAI in 2023 [22]) and for IS
education (jointly published by the AIS and ACM in 2021 [24])
underscore the still important role of object-oriented modeling
for university curricula; both define object-oriented modeling as a
compulsory competence for CS and IS graduates.

Despite the largely undisputed significance of teaching object-
oriented modeling, it is still a demanding activity that often enough
does not lead to the desired outcome. While the term ‘object’ is
often considered a tangible metaphor, Meyer [26, p. 177] even states
that objects “are there just for the picking,” the design and analysis
of object-oriented systems requires the design of classes from which
objects can be instantiated. The design of interrelated classes, how-
ever, is no matter of identification, but the result of an abstraction
process aimed at solving a particular problem. As Nierstrasz [28] em-
phasizes: “[...] in the real world, there are only objects. Classes exist
only in our minds.” Although this abstraction process is essential
to high-quality object-oriented systems, our teaching experience
suggests that students often struggle with it. This impression is
shared and emphasized by various lecturers and researchers in the
field [13, 20, 27].

Teaching object-oriented modeling is linked to the overarching
goal of developing abstraction skills. Lecturing is insufficient for
this purpose. Kramer [21] emphasizes the need for creating con-
ducive educational environments to teach abstraction skills. Such
an environment, Kramer (p. 41) continues, should give “students
the opportunity to explore many hypothetical questions” In the
case of object-oriented modeling, we postulate, this is supported by
the provision of an interactive learning environment that allows
students to create and manipulate classes and objects at run time
to receive immediate feedback on changes in the model.

Teaching object-oriented modeling by focusing on the inter-
relationship of objects and classes is no novel proposal. In 2002,
Andrianoff and Levine [1] proposed that learners should role-play
as objects and proclaimed that this can better “illustrate the dy-
namic behavior” (p. 124) of object-oriented systems. In 2003, Brinda
[6] defended an exploration-based approach to learning object-
oriented modeling that demanded students to “instantiate objects
and construct an object diagram” and “check whether an object
diagram is consistent with a class diagram” (pp. 18-19). But as ob-
served by Moisan and Rigualt [27, p. 49], UML modeling tools face a

https://orcid.org/0009-0000-4594-6578
https://orcid.org/0009-0000-6090-1204
https://doi.org/10.1145/3652620.3687777
https://doi.org/10.1145/3652620.3687777

MODELS Companion "24, September 22-27, 2024, Linz, Austria

core restriction here: “A particularly annoying issue [of UML mod-
eling tools] is that of model consistency. UML proposes a wealth
of different views on the system, at different levels of abstraction,
corresponding to different phases of development. This is good!
But these views are not independent, they have strong and consis-
tent relationships. Most of these relations are ignored by tools and
cannot be introduced by the modeler” This shortcoming of UML
modeling tools is partly caused by the fact that objects and classes
are actually modeled on the same level of abstraction (explained
in detail in Sec. 3.1). The official UML documentation itself states
that run-time objects “don’t appear in models directly” and only
“underlie the meaning of models” [29, p. 11].

This restriction of the UML language architecture has long been
acknowledged and motivated the introduction of multi-level mod-
eling languages [2, 3]. Multi-level modeling languages alleviate this
restriction by allowing the specification of an arbitrary number of
modeling levels. Our research group has been developing an exe-
cutable, multi-level object-oriented modeling language, called the
Flexible Multi-Level Modeling and Execution Language (FMMLX),

that is supported by a corresponding modeling tool, the XModeler™ML,

for over ten years. The multi-level-modeling environment enables
access to models at different classification levels and supports the
creation and execution of model instances. Given that the instantia-
tion and manipulation of models at run time may leverage learning
effects for students, but common UML tools face an architectural
limitation to support this feature adequately, we implemented an
object-oriented modeling tool, called UML-MX®, that supports
modeling with an executable, multi-level UML surrogate, which we
refer to as UML++.

To give a comprehensive impression of UML++ and UML-MX®,
we proceed as follows. At first, we present a list of requirements
that should be addressed by an object-oriented modeling tool used
for teaching (Sec. 2). Subsequently, UML++ and UML-MX® are
described, with a particular focus on the tool’s didactic enhance-
ments and underlying language architecture (Sec. 3). The tool is
supplemented by a preliminary evaluation in Sec. 4.

2 Requirements for a Didactic Object-Modeling
Tool

The development of any tool demands reflection about the needs
it should address. We can distinguish two different perspectives
here: a teacher’s perspective and a student’s perspective. Teachers
are primarily invested in conveying the teaching content appropri-
ately so that students achieve the required learning objectives. In
Sec. 2.1, we describe our teaching context, lay down some of our
assumptions concerning learning success and failure of students,
and in Sec. 2.2 we explicate the scope of object-oriented model-
ing concepts we consider. Students, on the other hand, have an
interest in accomplishing and mastering the learning objectives.
For intrinsically motivated students, learning might suffice as an
end for itself. But also for extrinsically motivated students (or even
unmotivated students), the attainment of the required skills and
knowledge is relevant at least to the degree that students desire
to pass the final course exam [25]. Students have no authority to
adjust the learning objectives, but they can still report on barriers

Pierre Maier and Tobias Schwarz

they encounter and possibly also suggest modifications to the teach-
ing that they assume would improve their learning. We conducted
first exploratory experiments with students using a UML modeling
tool and a multi-level-modeling tool. In Sec. 2.3, we report on the
received student feedback and induce requirements for UML++ and
UML-MX® from them.

2.1 Teachers’ Perspective: Our Teaching
Context and Didactic Assumptions

Our research group has been teaching object-oriented modeling to
undergraduate and graduate students for over twenty years as part
of our bachelor and master courses on enterprise modeling. The
courses cover a variety of modeling topics, such as data modeling,
business-process modeling, or domain-specific modeling languages.
In our bachelor course, object-oriented modeling concerns struc-
tural modeling with class diagrams only. It is attended by IS, CS, eco-
nomics, and business students. Coming from diverse backgrounds
and experiences, students approach the topic of object-oriented
modeling differently. In our experience, business and economics
students tend to struggle with understanding technical aspects of
object orientation: how classes allow for the creation of run-time
objects or how objects are syntactically composed, for example. CS
and IS students, who mostly have already visited programming and
software-development courses, tend to struggle with the abstrac-
tions provided in object-oriented modeling. Many of them have
problems with the conceptual difference between associations and
attributes; others struggle to see the benefit of modeling in the
first place. We don’t assume that our teaching context is unique
but rather think that some of the challenges we encounter are also
present in other course settings.

Challenge 1: Diversity of student backgrounds and experiences. One
significant reason for the relevance of object-oriented modeling
lies in its ability to facilitate communication among various stake-
holders. In our university setting, students from diverse academic
backgrounds are required to study object-oriented modeling, even
if they do not pursue any CS-related degree. Around 200 students
take the exam in our undergraduate course, and students encounter
individual barriers on their learning paths. These barriers can be
subtle and difficult for teachers to identify. With limited resources
that prevent personalized training for each student, addressing
these diverse learning barriers becomes a considerable challenge.
We anticipate that providing students with a tool tailored to accom-
modate and support their individual learning paths could mitigate
this challenge. This may include accounting for specific learning
obstacles that may result from specific backgrounds, such as stu-
dents who have not yet been exposed to object-oriented languages
or programming in any way.

Requirement 1: A didactic object-modeling tool should include
features that accommodate and support individual learning paths.
This entails providing learning paths that account for (a) varying
paces of learning, (b) diverse academic backgrounds, and (c) different
levels of prior knowledge in object-oriented modeling.

Challenge 2: Struggle to reach students, lack of engagement with
the subject matter. Although approximately 200 students participate
in our exam each semester, only between 25 and 50 consistently

UML++: Enhancing Student Learning of Object-Oriented Modeling through Executable Objects

attend our lectures and tutorials. The number of regular partici-
pants seems to be declining for some years. Causes for this reduced
participation might be multi-faceted and it is not within the scope
of this paper to explore these in depth. Nevertheless, we note that
engaging students has become increasingly challenging for us, and
this negatively affects our ability to deliver the teaching content ef-
fectively. The use of software tools to address this challenge reflects
a didactic guideline that can be traced to the 1980s [31]: reduce the
number of teaching instructions and increase the use of tailored
software tools that support students to explore the content on their
own. Papert [31, 32] refers to this as a constructionist approach to
teaching. Specifically, he proposes to think of learners as builders
that must be provided with “materials to build with” [31, p. 7]. A
modeling language may serve as such a material. This self-guided
exploration, however, needs to be accompanied by active student
engagement. For this very purpose, Laszlo and Castro [23, p. 10]
note that interactive learning environments should be “simple” and
“fun”

Requirement 2: A didactic object-modeling tool should serve as
an interactive learning environment that (a) facilitates self-directed
learning by offering prototypical modeling problems that prompt
students to search for solutions and (b) motivate students to engage
in the subject matter. Self-directed learning entails the provision of
suited feedback to solution proposals.

2.2 Teachers’ Perspective: Scope of
Object-Oriented Language Features

Any interactive learning environment is primarily aimed at sup-
porting learning and teaching particular learning objectives. To
support teaching and learning object-oriented modeling, a tool
should implement a corresponding modeling language. Given that
the UML is the de-facto standard for object-oriented modeling, we
think a modeling tool should maintain the UML syntax and nota-
tion as long as they do not violate particular learning objectives
being taught. Within our teaching context, only class and object
diagrams need to be supported. Support for further UML diagram
types is subject to future work (see Sec. 5).

Requirement 3: Since UML is the standard language for object-
oriented modeling, UML syntax and notation for class and object
diagrams should be maintained.

Furthermore, we hypothesize that the instantiation and execu-
tion of UML class diagrams may levitate the learning experience of
students. Potential effects of this hypothesis are discussed in Sec. 4.

Requirement 4: Instantiation and execution of models at run
time should be supported.

2.3 Students’ Perspective: Insights from
Exploratory Student Experiments

The following description reports on an experimental use of a multi-
level-modeling tool in our bachelor course on enterprise modeling.
We typically use MEMO4ADO [4, 5], a tool that was developed
in our research group on the basis of ADOxx, as a modeling tool
throughout the semester. It supports modeling all sorts of different
diagram types, one of which are UML class diagrams. Last semes-
ter, we used the XModelerML, our multi-level-modeling tool (see
Sec. 3.1), which has not been adapted to teaching purposes in any

MODELS Companion "24, September 22-27, 2024, Linz, Austria

way. Upon reaching the segment on object-oriented modeling in
the middle of the semester, we introduced the XModeler™L to the
students. In the tutorial sessions on object-oriented modeling, we
conducted two in-class assignments with the XModelerM’". Some
of our student assistants provided general help with installing and
using the tool. For the first in-class assignment, we presented the
students with a description of domain objects upon which they
should construct classes. In the second in-class assignment, stu-
dents were provided class diagrams within the modeling tool and
were given object-level requests from different imagined stakehold-
ers. They were asked to evaluate whether the request could be
fulfilled with the class diagram given and, if not, adjust the class
diagram accordingly.

The experience gathered from those in-class sessions was mixed.
One notable observation was the considerable time students re-
quired to familiarize themselves with the new modeling tool. Many
students expressed feeling overwhelmed and confused by the fea-
tures of the tool. The primary lesson learned from this experience
is the necessity to improve initial support for students using the
tool, along with restricted access to only those tool features that
are also required as part of the course.

Requirement 5: The number of tool features should be restricted
to those required for the course curriculum. Note that this may include
tailoring the scope of features towards particular user groups (cf.
Requirement 1).

Requirement 6: A didactic object-modeling tool should be pro-
vided with (a) a comprehensive initial training module and (b) tutori-
als that support students in using the tool.

The final assignment was to be completed outside of class. Stu-
dents were asked to construct a class diagram of a video-streaming
platform with a tool of their choice (MEMO4ADO or XModeler™ML)
based on a scenario description. The scenario description integrated
both instance-level and type-level information to avoid that “[all]
necessary abstractions have been already made by formulating the
text” [13, p. 314]. An excerpt from the assignment reads as follows:
“Katherine uploaded a video entitled ‘Visiting Utah’ on Jul 18, 2023.
The video ‘Visiting Utah’ is a so-called premium video. Premium
videos are only available to users who are subscribed to the user
who uploaded the video.” Students could hand in their solution and
a feedback on the chosen modeling tool for bonus points. A total of
34 students submitted their solutions and feedback, with 27 opting
to use the XModelerML,

The feedback we received reinforced our observations from the
in-class sessions. Many students noted usability issues or requested
additional support within the tool (n=14). Most usability issues
were generic (in the style of “difficulties with using the tool”), while
others were more specific (e.g., unclear how to add domain-specific
data types). Such usability issues can be counteracted by an intro-
duction and guide on how to use the modeling tool (cf. Requirement
6). Incomprehensible tool errors, that made the use of the tool bur-
densome, were also mentioned by many students (n=11). Some
students also noted that they welcomed errors in cases where they
indicated faults in the model itself (e.g., not possible to draw link
between two objects).

Requirement 7: Errors that occur when using the tool should be
informative and guide students towards correcting flaws in the model.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Other than this, students requested explanations of object-oriented
concepts within the tool (n=8) and noted that they would welcome
feedback on their solution or parts of their solution directly within
the tool (n=2). Feedback for a student’s solution is already entailed
by Requirement 2.

Requirement 8: A didactic object-modeling should include expla-
nations and illustrations of object-oriented modeling concepts within
the editor interface.

This results in a final list of eight requirements that serve as the
basis for the development of UML++ and UML-MX®.

3 UML-MX®: The UML++ Modeling Tool

The research of our group is centered around the development
and use of domain-specific languages in general and multi-level
language architectures in particular. This work led to the develop-
ment of a multi-level modeling and execution environment, the
XModelerM! [8], which is based on the foundational language-
engineering environment XModeler [11]. In Sec 3.1, we provide a
general overview of the XModelerM™ and the multi-level-modeling
language it implements, the FMMLX. We specifically explicate how
they serve to overcome shortcomings of the UML. In Sec. 3.2, we ex-
plain how we adapted the XModeler™™ to address the requirements
outlined in Sec. 2.

3.1 Shortcomings of UML Tools and Prospects
of the FMML* and XModelerM!

Traditionally, object-oriented modeling and programming is re-
stricted to two levels of abstraction: a type level that represents
classes and an instance level that represents objects. A language
user cannot add further levels. Fixed, two-level languages like the
UML lead to the following problems:

(1) Objects and classes are represented on the same level of abstrac-
tion. The UML is based on a fixed four-level language architecture
and is maintained by the OMG. UML models constructed by users
reside on level M1. Each modeling element of an M1 model must be
an instance of a modeling concept of the M2 UML specification. In
principle, the UML allows to model classes and objects. However,
since all modeling concepts of the UML reside on level M2 only
and modeling elements are instances thereof on M1, classes and
objects reside on the same modeling level. Objects in the UML are
not instances of user-defined classes. As noted in the UML doc-
umentation, an object modeled with the UML “does not depict a
precise run-time structure. [...] No conclusions can be drawn about
the implementation detail of run-time structures” [30, p. 55]. As a
result, the UML only allows for modeling separate class and object
diagrams that are not integrated with each other.

(2) Modeling tools implement classes as objects. Modeling tools
implemented with a traditional, two-level object-oriented program-
ming language (e.g., Java) face an additional limitation. Every dia-
gram element, such as a user-defined class, is itself an instance of
some class within the programming code. This prohibits any further
instantiation into user-defined objects within the diagram. This
mismatch between the conceptual-modeling level and the imple-
mentation level is illustrated in Fig. 1. Consequently, users cannot
interact with an integrated view of M0 objects and M1 classes in
traditional UML modeling tools. Tools must implement additional

Pierre Maier and Tobias Schwarz

Modeling Environment Programming Environment

Class Attribute
name: String includes® [name: String
0,*[isAbstract: Boolean | 1,1 0,* |type: String
01
specializedFrom P

represents class on M1
class Customer
Customer {

firstName: String
lastName: String
custID: String
dateOfBirth: Date
vearsOfAge() : Integer

String firstName;
String lastName;
Date dateOfBirth; [

generate

public int yearsOfAge ()

represented as object on MO ¥

E conceptual level Program instance Mo

I ctual implementation level

Figure 1: Illustration of mismatch between abstraction levels
in conceptual models and programming code [16, p. 469]

consistency checks which are faced with all kinds of difficulties
(e.g., type checking). In model-driven software development, this
also creates the need to transform models into code - two separate
representations typically written with two different languages are
required.

Multi-level modeling aims to overcome these problems. In our re-
search group, we have developed the Flexible Multi-Level Modeling
and Execution Language (FMMLX) that is supported by a respective
modeling tool, the XModelerM!, The FMMLX is an object-oriented
multi-level-modeling language. Its core modeling concepts are simi-
lar to the UML’s: at the core are classes that may have attributes and
may be interrelated by associations. But in contrast to the UML, the
FMMLX*, which is an extension to XCore [9, 10], is a meta-circular
language. Object in the FMML* meta model is an instance of Class
and Class is a specialization of Object. This meta circularity of
the FMMLX allows for the specification of an arbitrary number of
modeling levels. Any class, as an object itself, can be an instance of
a further meta class.

Objects in the FMML* represent actual run-time objects. Con-
sequently, the FMMLX is an executable modeling language. Next
to associations and attributes, classes may also contain constraints
and operations. Constraints and operations are written in the exe-
cutable object constraint language (XOCL), which is a variant of the
OCL used for specifying constraints in UML diagrams. FMML* dia-
grams can be constructed and managed with the XModelerML, an
open-source software that can be downloaded at https://www.wi-
inf.uni-due.de/LE4MM/. More in-depth accounts of the FMMLX,
XModelerML, and related technologies are provided in [7, 9, 10, 14,
15].

As a result of these language features, the FMMLX allows for
a common representation of model and code. FMML* diagrams
created with the XModelerM! are executable. No additional repre-
sentation for execution is needed. The model is the code. This avoids
any need for further code generation and allows the instantiation
and execution of models directly within the tool.

3.2 Adaptation to UML++ Editor

According to our teaching experience and first experiments con-
ducted with students (see Sec. 2), adaptation of the XModelerML

https://www.wi-inf.uni-due.de/LE4MM/
https://www.wi-inf.uni-due.de/LE4MM/

UML++:

4 Cinema:MovieManagement

Model View Help

Qaaa Qoi

[VoinView | lsiogram | Objctiogram

Customer

Enhancing Student Learning of Object-Oriented Modeling through Executable Objects

MODELS Companion "24, September 22-27, 2024, Linz, Austria

- dateOfBirth: Date buysP
- firstname: String -
- lastname: String 1 MovieShowing Movie
+ gethgel): Integer Ticket valid_forP ~<howDate: Date dshown_in - durationInMinutes: Integer
1 1 ring gt
0.* Emaywat(:hMowe 0.* + requiredAgeToWatch(): Integer
validifort =~ A'"M:;:;shlrxi"nn:;\ » 7‘jhi‘”n-in AMovie/
_ showDate = 22 Sep 2024 | movie}
is too young L _.duraﬂonlnMinuies =122
rating = R
ACustomer” | title = Joker
customerl o requiredAgeToWatch(-> [l
dateOfBirth = 16 Jun 2008 -
firstname = Josie
lastname = Dough o
getAge(-> [:
: buysh At“i’:::;,\ validfor priovieShowinog Ashown_in "Mm{ie'*
I | o > movieShowing2 |} T B movie2
price = 4.5 showDate = 07 Nov 2024 | |durationinMinutes = 195

4ranng =PG_13
title = Titanic
requiredAgeToWatch()->

Figure 2: Screenshot from UML-MX® with UML++ diagram

is required for three reasons. (i) First, as a multi-level-modeling
tool, it includes many features unfit for the purpose of teaching
object-oriented modeling. (ii) Second, while the FMML* and UML
share a set of core modeling concepts, the FMMLX uses a different
graphical notation than the UML. (iii) Third, as the XModelerM~
was originally not intended for teaching purposes, it does not of-
fer any didactic support. A screenshot of the UML-MX® modeling
editor with a UML++ diagram is shown in Fig. 2.

Step 1: Reduction to essential tool features. At first, we set out to
identify which tool features were irrelevant to construct executable
class diagrams. Irrelevant tool features have been faded out. In
UML-MX®, we removed the possibility for users to create multi-
level models. Only UML++ diagrams (see Step 2) can be added. User
dialogues that open when a class is added, an attribute is modified,
or similar actions have been stripped of multi-level language fea-
tures. Upon opening the modeling tool, the Control Center appears,
from which users can navigate to the overview of available learning
units (see Step 3) and create new UML++ models.

Step 2: Reconception of FMML* as UML++. UML++ diagrams rep-
resent executable models that may include classes on level 1 and
run-time objects on level 0. Classes and objects in UML++ diagrams
replicate the graphical notation of classes and objects as specified in
the UML. UML++ is a confined version of the FMMLX that prohibits
the specification of higher-level classes and implements UML nota-
tion. Although UML++ resembles the UML, they are not identical.
Some fundamental differences include the following:

e Traditionally, the UML offers two separate diagram types for
classes and objects. In UML++, objects and classes may be mod-
eled within the same diagram. Note that it is still possible to
model classes and objects in different diagrams if desired.

UML++ objects must be instances of modeled UML++ classes. In
contrast to the UML, the class name of an object is not entered
manually but is determined automatically. As a result, it may not
be any string value but must correspond to its actual class name.
Operations and constraints in UML++ are executable. While in
the UML operations are confined to their signature, the exe-
cutability of UML++ offers the specification of an operation body.
We have adjusted our operation editor so that a user can switch
between a normal mode and an expert mode. In the normal mode,
users can only adjust the signature; the operation body can only
be modified in the expert mode.

The graphical representation of objects in UML++ includes a
compartment with all return values of executed operations.
Because UML++ objects are run-time instances of UML++ classes,
we require the use of actual data types. UML++, as a subset of
the FMML* offers the following data types per default: Boolean,
Integer, Float, String, Date, Currency, and MonetaryValue.
It is also possible to add, what we refer to in our lectures as,
domain-specific data types, i.e., to use one user-defined class as
a type for an attribute of another class. Furthermore, users can
specify enumerations that contain a custom set of values. In case
an enumeration is selected as a data type for an attribute, users
can select the slot value via a drop-down menu.

The context of a constraint must not be added by a user but is
added automatically. In UML++, the representation of a class
contains an additional compartment that includes its constraints.
Violations to constraints are shown in UML++ objects.

UML++ offers native support for delegation associations [18].
Aggregation and composition associations have not yet been
implemented at the time of writing.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

&5 Learning Unit Selection

D Learning Unit Name Passed

1 Classification and Instantiation

2 References between Objects: Associations and Links
Multiplicity of Attributes

4 Deficient Classes

5 Types for Attributes: Default types, Domain-specific types, and

6 Generalization/Specialization I Inheritance and Abstract Classes

7 Generalization/Specialization II: Pitalls of Specialization and De.

[Model Circles

9 Derivable Attributes and Operations

10 Custom Constraints using an OCL-based Language

Pierre Maier and Tobias Schwarz

Theoretical Background ~ Self-Assessment

UML++ Introduction

This learning unit serves as an introduction to fundamental UML++ features. The
UML++ introduction can be started by clicking on the "Self Assessment" tab,
selecting the "UML++ Introduction”, and clicking on "Start Self-Assessment Test".

Cancel

Figure 3: Overview of UML++ learning units in UML-MX®

Step 3: Addition of didactic features. We have implemented a
Guided-Modeling Mode in UML-MX® designed to assist students in
solving modeling problems and gaining a deeper understanding of
fundamental modeling concepts. In this mode, the regular modeling
editor is extended with a Task Viewer that provides users with a
task description. Users can only proceed to the next task after
successfully creating a model that meets the given description.

The Guided-Modeling Mode serves as the basis for developing
learning units (LUs). We have specified ten sequential learning
units that align with the learning objectives covered in our courses.
Fig. 3 shows the “Learning Unit Selection” window that includes
the current set of ten learning units along with a special LU-0
designed to introduce UML++ concepts to beginners (selected in
Fig. 3). At the time of writing, the learning units LU-1 (Classifica-
tion and Instantiation), LU-4 (Deficient Classes), LU-6 (Generaliza-
tion/Specialization I), LU-8 (Model Circles), and LU-9 (Derivable
Attributes and Operations) have been specified in detail and are
currently being implemented.

Upon selecting a learning unit, users can switch among tabs
displaying (i) the learning objectives for the learning unit (Learning
Objectives), (ii) background information on the related modeling
concepts (Theoretical Background), and (iii) a set of self-assessment
exercises (Self Assessment). An exemplary learning objective from
LU-9 is: "You should be able to correctly identify attributes whose slot
values are derivable." The background information provided for LU-1
includes the following explanation: "Instantiation refers to the process
of creating an object from a given class. In class-based object-oriented
languages (such as Java), the specification of a class must always
precede the creation of objects. [...]". From within the Theoretical
Background tab, users can open an example model. In LU-8 this
opens a class diagram with instantiated objects where referential
integrity is violated. Students may self-assess their understanding of
the learning objectives through the different self-assessment tests.
Each self-assessment test uses the Guided-Modeling Mode and
requires students to fulfill all described conditions for the exercise
to be marked as ’passed’ within the tool. Completing all tests within
a learning unit, marks the unit as *passed’

Further information on UML-MX® is provided in [19]. The tool
can be downloaded at https://www.wi-inf.uni-due.de/LE4MM/uml-
mx/. The web site also provides the latest information on tool
updates alongside screencasts demonstrating its use.

4 Discussion and Preliminary Evaluation

A rigid evaluation of UML++ and UML-MX©, also in comparison
to other UML modeling tools, has not yet been performed. To the
best of our knowledge, no other UML modeling tool supports the
instantiation of classes into executable objects. We plan to use our
first version of UML-MX® in our bachelor course in the winter
term 2024/2025.

First reflections of the current version of UML++ and UML-MX®
are given here by two means. In Sec. 4.1 we present further feedback
from the first student experiments introduced in Sec 2.3. In Sec
4.2 we reflect upon how the current version of UML-MX® can be
evaluated against the requirements presented in Sec. 2.

4.1 Insights from first XModelerM! Student
Experiments

In Sec. 2.3, we report on first student experiments conducted with
the XModelerM! without any adaptation for teaching purposes. On
the one hand, we noticed several burdens to using the XModelerM-
and collected student feedback on how a didactic modeling tool
might better support their learning experience. This feedback guided
the development of our first version of UML++ and UML-MX®. On
the other hand, we also observed effects of using the XModelerML
that we assume to apply to UML-MX® as well. These include espe-
cially the following:

Creation of objects seems to be intuitive and welcomed by students.
The first in-class assignment (see Sec. 2.3) required students to
construct classes based on a natural-language description of do-
main objects. During this session, we introduced the students to
the XModelerML and explained to them how classes, attributes, and
associations can be added. Interestingly, the students started to
instantiate objects from classes by themselves without any explicit

https://www.wi-inf.uni-due.de/LE4MM/uml-mx/
https://www.wi-inf.uni-due.de/LE4MM/uml-mx/

UML++: Enhancing Student Learning of Object-Oriented Modeling through Executable Objects

instruction or prompt, and even without being introduced to how
classes can be instantiated within the tool, to check whether the in-
stantiated objects fit the provided descriptions. This first impression
indicated to us that students who are novices in object-oriented
modeling intuitively lean towards the creation of objects.

This initial observation was further supported by feedback re-
ceived from the home assignment (see Sec. 2.3). Of the set of stu-
dents who used the XModeler™L (n=24), 22 created partial or com-
plete object diagrams to self-assess whether the class diagram met
the requirements. The assignment explicitly stated that only a class
diagram accounted for the reception of bonus points. Among the
smaller group of students who used MEMO4ADO (n=6), our mod-
eling tool that we use for all other tutorials in our course, three
complained that the tool did not offer any instantiation of class
diagrams. Four students reported that they resorted to modeling
objects with pen and paper.

Use of innovative modeling tool seems to increase student engage-
ment. The use of the XModelerM™ appeared to have increased stu-
dent engagement. During in-class sessions, students reported that
using an innovative tool which is part of ongoing research sparked
their interest. They found the exercises involving the analysis of
domain objects, rather than focusing exclusively on the type level
as is typical for data, function, and business-process modeling, to
be an interesting experience. However, this increased engagement
might be attributed to several factors.

For one, if the XModelerM! were used consistently throughout
the semester, students might have been less likely to perceive it as
a novel and interesting alternative. This shift in perception could
also occur over multiple semesters. Once the XModeler™™ becomes
a standard tool for object-oriented modeling, the initial excitement
and engagement it generated may diminish.

Tool seems to support self-guided learning of object-oriented mod-
eling. Overall, our first experimental use of the XModelerM for
teaching purposes supports the hypothesis that simultaneous mod-
eling of classes and executable objects levitates students’ learning
experience. By allowing students to instantiate and interact with
objects derived from their class diagram, the tool facilitated a more
tangible understanding of abstract modeling concepts. Students
were able to directly observe the impact of their modeling decisions
on instantiated objects. This immediate feedback of the tool, albeit
it was not yet tailored in any particular way, supports students in
their learning endeavors.

What remains an open research question is the extent to which
modeling run-time objects by itself increases student engagement
and may support self-guided learning. Future experiments should
clarify this aspect to better understand how such a hands-on mod-
eling influences student interest and learning outcomes.

4.2 Evaluation against Requirements

Atlast, we want to reflect upon how the current implementation and
conception of UML++ and UML-MX® addresses the requirements
outlined in Sec. 2.

The dissection into learning units accounts for Req. 1a. Learning
units may be repeated and studied at any desired pace. Req. 1c is
also partially addressed by the dissection into learning units in that
students are allowed to start with any learning unit they desire.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

However, the tool currently lacks specific support for common
learning barriers and does not offer tailored support for different
backgrounds (Req. 1b and 1c).

Req. 2a is addressed by offering modeling problems as part of
the different learning units. The set of learning units and especially
the number of offered problems is, however, currently restricted
and extension of learning units and problems is faced with addi-
tional implementation effort. Future versions should (i) provide
increased support for instructors to add their own learning units
and modeling problems and (ii) account for possibilities to auto-
generate modeling problems. Overall, however, it is difficult to
evaluate how far exactly UML-MX® facilitates self-directed learn-
ing. First exploratory student experiments (see Sec. 4.1) indicate
that self-directed learning is also supported through the provision
of a run-time, executable modeling environment with immediate
feedback on modeling decisions. Those experiments also seem to
increase student engagement (Req. 2b) by providing an innova-
tive modeling tool that offers access to objects, which might be
more tangible than the manipulation of classes alone. However,
we acknowledge that much more research on increasing student
engagement and motivation may be accounted for. This may in-
clude the implementation of gamification elements, e.g., to provide
students with different kinds of rewards.

Req. 3 and 4 are met. More advanced features of UML class
diagrams such as association classes or UML profiles are not yet
supported since they are not part of our curriculum. All tool features
of the XModelerM™ have been reduced to the ones required for
UML++ modeling. We did not yet account for particularities of
different student groups in the provision of tool features (see Req.
1b). Tool features are successively unlocked within the UML++
introduction (Req. 6a). Tutorials are only provided as part of the
introduction and learning units (Req. 6b).

Modeling errors and the identification of flaws in models (Req.
7) represent a larger complex than indicated up until this point. On
the object level, flaws are easily detectable if they violate specifi-
cations made at the class level, e.g., if an object lacks the required
number of links or when a slot value violates its attribute data type
(formal-semantic errors). Similarly, students are informed when they
try to violate syntactical rules of the UML++ modeling language,
e.g., to leave a class nameless or an association without two ends
(syntactic errors). These syntactic and formal-semantic errors are
identified and reported to the user in UML-MX®. The provision of
didactic feedback should, however, also account for the adequacy
of a modeling solution to provide feedback on modeling decisions
that affect reusability or model integrity. This kind of feedback is
difficult to implement in a modeling tool because any tool will lack
complete information about the modeled domain. Instructive feed-
back of flawed modeling decisions of this kind is only given within
the Guided-Modeling Mode. Here, we also offer explanations and
illustrations of UML++ modeling concepts (Req. 8), albeit these are
also limited to the current set of learning units.

5 Conclusion and Future Research

In this paper, we presented UML-MX®, an object-modeling tool
that allows for the instantiation and execution of models at run time
without the need for switching between multiple representations.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

The tool supports UML++, a multi-level UML surrogate developed
on the basis of the multi-level-modeling language FMML*. UML-
MX® includes ten learning units that cover foundational concepts
of object-oriented modeling and support self-guided learning. First
preliminary experiments affirm our hypothesis that modeling exe-
cutable objects may benefit student learning.

Moving forward, our focus will be on conducting more thorough
evaluations of UML++ and UML-MX® within different course set-
tings to refine tool features and provide more support tailored for
the use by different educators. This may, for instance, include the
implementation of different roles (e.g., instructor, teaching assistant,
student) within the tool.

Object-oriented modeling with the UML is only one of many ar-
eas of conceptual modeling we cover in our courses. Others include
business-process modeling, data modeling, enterprise modeling,
meta modeling, and the specification of domain-specific languages.
We envision the development of a didactic executable modeling
tool that accounts for more than modeling classes and objects with
the UML. This may include adding further UML diagram types
but also other commonly used modeling languages. Since the UML
and the FMMLX are both object oriented, no new meta model had
to be developed. But the FMML¥ and XModelerM! can also be ad-
justed to support other modeling languages without too much effort.
Frank and Clark [17], for example, show how meta models for the
construction of data-flow diagrams (DFDs) and entity-relationship
models (ERMs) can be implemented within the XModelerML. In the
end, we want to offer an educational modeling tool that enables a
smooth transition from more fundamental conceptual-modeling
areas (like class and object diagrams with the UML) towards more
advanced ones (like specifying domain-specific languages) by un-
locking more and more tool features as a course advances.

References

[1] Steven K. Andrianoff and David B. Levine. 2002. Role Playing in an Object-
Oriented World. In SIGCSE "02: Proceedings of the 33rd SIGCSE Technical Sympo-
sium on Computer Science Education, Judith Gersting and Henry M. Walker (Eds.).
121-125.

[2] Colin Atkinson and Thomas Kiihne. 2001. The Essence of Multilevel Meta-
modeling. In UML 2001 - The Unified Modeling Language. Modeling Languages,
Concepts, and Tools: 4th International Conference, Toronto, Canada, October 1-5,
2001. Proceedings, Martin Gogolla and Cris Kobryn (Eds.). 19-33.

[3] Colin Atkinson and Thomas Kiihne. 2002. Rearchitecting the UML Infrastructure.
ACM Transactions on Modeling and Computer Simulation 12, 4 (2002), 290-321.

[4] Alexander Bock and Ulrich Frank. 2016. Multi-Perspective Enterprise Modeling:
Conceptual Foundation and Implementation with ADOxx. In Domain-Specific
Conceptual Modeling: Concepts, Methods and Tools, Dimitris Karagiannis, Hein-
rich C. Mayr, and John Mylopoulos (Eds.). Springer, Berlin, 241-267.

[5] Alexander Bock, Ulrich Frank, and Monika Kaczmarek-He8. 2022. MEMO4ADO:
A Comprehensive Environment for Multi-Perspective Enterprise Modeling. In
Modellierung 2022 Satellite Events. 245-255.

[6] Torsten Brinda. 2003. Student Experiments in Object-Oriented Modeling. In
Informatics Curricula and Teaching Methods: IFIP TC3 / WG3.2 Conference on
Informatics Curricula, Teaching Methods and Best Practice (ICTEM 2002) July
10-12, 2002, Florianépolis, SC, Brazil, Lillian Cassel and Ricardo A. Reis (Eds.).
Springer, Berlin and Heidelberg, 13-20.

[7] Tony Clark. 2024. Executable Multi-Level Modelling: Establishing Foundations,
Methods and Tools. In Informing Possible Future Worlds: Essays in Honour of
Ulrich Frank, Stefan Strecker and Jiirgen Jung (Eds.). Logos, Berlin, 157-172.

[8] Tony Clark and Ulrich Frank. 2020. Multi-Level Modelling with the FMMLx
and the XModelerML. In Modellierung 2020 Proceedings, Dominik Bork, Dimitris
Karagiannis, and Heinrich C. Mayr (Eds.). 191-192.

[9] Tony Clark, Paul Sammut, and James Willans. 2008. Applied Metamodelling; A
Foundation for Language Driven Development (2 ed.). Ceteva, Sheffield. https:
//eprints.mdx.ac.uk/id/eprint/6060

[10

[11

[12

(13

[14

[15

[16

(17

(18

[19

[20]

[21]

~
&,

[23

[24

[26

[27

(28]

[29

[30

@
=

(32

[33

Pierre Maier and Tobias Schwarz

Tony Clark, Paul Sammut, and James Willans. 2008. Superlanguages: Developing
Languages and Applications with XMF. Ceteva, Sheffield. https://core.ac.uk/
download/42487298.pdf

Tony Clark and James Williams. 2013. Software Language Engineering with XMF
and XModeler. In Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments, Marjan Mernik (Ed.). IGI Global, Hershey, PA, 311-340.
David E. Douglas and Bill C. Hardgrave. 2000. Object-Oriented Curricula in
Academic Programs. Commun. ACM 43, 11es (2000).

Gregor Engels, Jan Hendrick Hausmann, Marc Lohmann, and Stefan Sauer. 2006.
Teaching UML Is Teaching Software Engineering Is Teaching Abstraction. In Satel-
lite Events at the MoDELS 2005 Conference: MoDELS 2005 International Workshop
OCLWS, MoDeVA, MARTES, AOM, MTiP, WiSME, MODAUIL, Nfc, MDD, WUsCaM,
Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Papers, Jean-Michel
Bruel (Ed.). Springer, Berlin and Heidelberg, 306-319.

Ulrich Frank. 2014. Multilevel Modeling: Toward a New Paradigm of Conceptual
Modeling and Information Systems Design. Business and Information Systems
Engineering 6, 6 (2014), 319-337.

Ulrich Frank. 2018. The Flexible Multi-Level Modelling and Execution Language
(FMMLx), Version 2.0: Analysis of Requirements and Technical Terminology. ICB
Research Report. Universitat Duisburg-Essen, Essen. https://doi.org/10.17185/
duepublico/47506

Ulrich Frank. 2022. Multi-Level Modeling: Cornerstones of a Rationale. Software
and Systems Modeling 21 (2022), 451-480.

Ulrich Frank and Tony Clark. 2022. Peculiarities of Language Engineering in
Multi-Level Environments or: Design by Eliminiation: A Contribution to the
Further Development of Multi-Level Modeling Methods. In MODELS °22: Proceed-
ings of the 25th International Conference on Model Driven Engineering Languages
and Systems: Companion Proceedings, Thomas Kithne and Vasco Sousa (Eds.).
424-433.

Ulrich Frank, Tony Clark, Jens Gulden, and Daniel Tépel. 2024. An Extended
Concept of Delegation and its Implementation with a Modeling and Program-
ming Language Architecture. Enterprise Modelling and Information Systems
Architectures 19, 2 (2024).

Ulrich Frank and Pierre Maier. 2024. UML-MX: Boosting Power of Object-
Oriented Modeling and Enriching User Experience. In 26th International Confer-
ence on Business Informatics (CBI 2024).

Luz E. Gutiérrez, Carlos A. Guerrero, and Héctor A. Lopez-Opsina. 2022. Ranking
of Problems and Solutions in the Teaching and Learning of Object-Oriented
Programming. Education and Information Technologies 27 (2022), 7205-7239.
Jeff Kramer. 2007. Is Abstraction The Key to Computing? Commun. ACM 50, 4
(2007), 37-42.

Amruth N. Kumar, Raj, Rajendra, K., Herif G. Aly, Monica D. Anderson, Brett A.
Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein, Michael Goldweber,
Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan Reiser,
Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. 2023. Computer
Science Curricula. https://doi.org/10.1145/3664191

Alexander Laszlo and Kathia Castro. 1995. Technology and Values: Interactive
Learning Environments for Future Generations. Educational Technology 35, 2
(1995), 7-13.

Paul Leidig, Salmela, Hannu, Greg Anderson, Jeffry Babb, Carina de Villiers,
Lesley Gardner, Jay F. Nunamaker, Brenda Scholtz, Venky Schnkararaman, Raja
Sooriamurthi, and Mark Thouin. 2021. 152020: A Competency Model for Un-
dergraduate Programs in Information Systems. https://www.acm.org/binaries/
content/assets/education/curricula-recommendations/is2020.pdf

W. J. McKeachie. 1963. Research on Teaching at the College and University
Level. In Handbook of Research on Teaching, N. L. Gage (Ed.). Vol. 1118-1172. Rand
McNally & Company, Chicago.

Bertrand Meyer. 1997. Object-Oriented Software Construction (2 ed.). Prentice-Hall,
Upple Saddle River, NJ.

Sabine Moisan and Jean-Paul Rigault. 2010. Teaching Object-Oriented Modeling
and UML to Various Audiences. In Models in Software Engineering: Workshops
and Symposia at MODELS 2009, Denver, CO, USA, October 4-9, 2009. Reports and
Revised Selected Papers, Sudipto Ghosh (Ed.). Springer, Berlin and Heidelberg,
40-54.

Oscar Nierstrasz. 2010. Ten Things I Hate About Object-Oriented Programming.
Journal of Object Technology 9, 5 (2010).

OMG. 2005. Unified Modeling Language: Superstructure. https://www.omg.org/
spec/UML/2.0/Superstructure/PDF

OMG. 2006. Unified Modeling Language: Infrastructure. https://www.omg.org/
spec/UML/2.0/Infrastructure/PDF

Seymour Papert. 1980. Mindstorms: Childrens, Computers, and Powerful Ideas.
Basic Books, New York.

Seymour Papert. 1993. The Children’s Machine: Rethinking School in the Age of
the Computer. Basic Books, New York.

Sally Shlaer and Stephen J. Mellor. 1988. Object-Oriented Systems Analysis: Mod-
eling the World in Data. Yourdon Press, Englewood Cliffs, NJ.

https://eprints.mdx.ac.uk/id/eprint/6060
https://eprints.mdx.ac.uk/id/eprint/6060
https://core.ac.uk/download/42487298.pdf
https://core.ac.uk/download/42487298.pdf
https://doi.org/10.17185/duepublico/47506
https://doi.org/10.17185/duepublico/47506
https://doi.org/10.1145/3664191
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is2020.pdf
https://www.acm.org/binaries/content/assets/education/curricula-recommendations/is2020.pdf
https://www.omg.org/spec/UML/2.0/Superstructure/PDF
https://www.omg.org/spec/UML/2.0/Superstructure/PDF
https://www.omg.org/spec/UML/2.0/Infrastructure/PDF
https://www.omg.org/spec/UML/2.0/Infrastructure/PDF

	Abstract
	1 Introduction
	2 Requirements for a Didactic Object-Modeling Tool
	2.1 Teachers' Perspective: Our Teaching Context and Didactic Assumptions
	2.2 Teachers' Perspective: Scope of Object-Oriented Language Features
	2.3 Students' Perspective: Insights from Exploratory Student Experiments

	3 UML-MX©: The UML++ Modeling Tool
	3.1 Shortcomings of UML Tools and Prospects of the FMMLx and XModelerML
	3.2 Adaptation to UML++ Editor

	4 Discussion and Preliminary Evaluation
	4.1 Insights from first XModelerML Student Experiments
	4.2 Evaluation against Requirements

	5 Conclusion and Future Research
	References

