
Multi-Level Language Architectures as a
Foundation for Advanced Enterprise Systems

Ulrich Frank
Department of Computer Science

University of Duisburg-Essen
Germany

0000-0002-8057-1836

Abstract—Enterprise systems are the backbone of many com-
panies. Most operational activities are usually not feasible with-
out them. In addition, enterprise systems may also constitute
remarkable competitive advantage – or turn out to be a threat to
competitiveness, depending on their quality. Enterprise systems
in general, ERP systems in particular, have been around for
some decades. During this time, they have undoubtedly un-
dergone a maturing process. However, hardly any significant
progress has been made regarding foundational architectures
and corresponding functions. Based on an analysis of widely
undisputed objectives and corresponding shortcomings of current
enterprise systems, this paper presents an advanced architecture
that enables the construction of self-referential enterprise systems
(SRES). SRES promise substantial progress with respect to
various essential objectives of enterprise systems. The proposed
architecture is based on a multi-level language architecture.
Among other things, it allows for the integration of enterprise
models and corresponding software at run-time. Thus, it does
not only boost reuse and adaptability, but substantially fosters
user empowerment, too.

Index Terms—integration, reuse, adaptability, conceptual
model, enterprise model, self-referential enterprise system,
DSML

I. INTRODUCTION

TODAY’S enterprises depend on software systems.
Among others, software systems are of pivotal relevance

for resource management, for running business processes and
for decision making. Among a plethora of specific systems,
there are a few software systems that are of general relevance
for a wide range of companies, e.g., systems for human
resource management, for customer management, for stock
management, to name a few only. The most prominent, not to
say prototypical example of enterprise software are enterprise
resource planning (ERP) systems. In the following, I will
subsume these enterprise software systems under the umbrella
term of enterprise systems, with specific emphasis on ERP
systems.

Over the past decade, there have been various technological
trends that have had an impact on the development and
use of business software. Driven by the availability of non-
volatile RAMs at affordable prices, the old idea of In-Memory
databases [1] found its way into commercial ERP systems. It is
suited to substantially increase the performance of extensive
data analysis processes. Thus, it allows to integrate OLAP

and OLTP functionality in one database management system.
This not only means that more up-to-date data can be used in
analyses, but also makes the data warehouse system partially
obsolete. Microservices represent another trend in enterprise
computing. Whilst their name is misleading, they can make an
important contribution to scalability and, related to the previ-
ous, to deployment of enterprise systems. Microservices may
have an impact on the architecture of software systems, espe-
cially in cases where the load different parts of a system have
to handle, varies. Related, but not confined to microservices
is a further trend that concerns the management of enterprise
systems. “Software as a Service” does not only relieve the
burden on internal IT management, but is often accompanied
by special billing models that may reduce overall costs – and
promise better scalability. These innovations can be of great
benefit and may even be a prerequisite for the realisation of
certain business models. Nevertheless, they have no significant
impact on the basic architecture and functionality of ERP
systems.

Other trends concern development and maintenance of
enterprise systems. The idea of model-driven development
(MDD) has been around for some time [2]. It is based on
the convincing assumption that focusing on conceptual models
without the need to bother with peculiarities of implementation
languages is suited to contribute to productivity of software
development projects and to software quality alike. As we
shall see, MDD suffers from certain pitfalls, which may have
contributed to the disappointing fact that it seems not to have a
substantial impact on the development and maintenance of en-
terprise systems. Recently, a considerable hype was generated
by so called “low-code” platforms. They offer the prospect of
enabling employees without specific programming knowledge
to develop software. The idea is not to develop large systems,
but rather to quickly create smaller systems tailored to specific
needs, which are suitable for partially replacing the use of
spreadsheet programs, for example. Irrespective of the fact that
low-code represents a clearly exaggerated marketing trend, it
can hardly be assumed that the design and functionality of
business software will be influenced by it. For critical accounts
of low-code platforms see [3], [4].

Our brief overview of developments that had or might have
an impact on the realization and use of enterprise systems

Preproceedings of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 9–20

©2024 9 Invited contribution

shows that progress that concerns the principal architecture
was rather limited. Even though it is interesting to ask about
the reasons for this, I will refrain from analysing them here. In-
stead, in the following we want to explore the question of how
future enterprise systems could be designed in order to offer
significant advantages. To that end, I will at first look at widely
undisputed objectives that enterprise systems should satisfy
and identify the pivotal measure to achive them. Against that
background I present a vision of future enterprise systems,
which we refer to as self-referential enterprise system (SRES),
that goes clearly beyond the possibilities of current systems.
Regarding its implementation, the vision is confronted with
considerable challenges that can hardly be overcome with
conventional language architectures. However, as I will show,
a multi-level language architecture is suited to build and run
SRES.

II. ENTERPRISE SYSTEMS: UNDISPUTED OBJECTIVES AND
CHALLENGES

Various approaches to develop an idea of how to improve
enterprise systems are conceivable. One could ask experienced
users to report on aspects of current systems they are not
satisfied with – and to express requirements future enterprise
systems should fullfil. Alternatively, it would be an option to
study architectures of existing systems in order to identify seri-
ous weaknesses that call for better solutions. Both approaches
require considerable effort. In addition, they are accompanied
by specific methodical challenges that make the success of
such studies questionable. We therefore choose a different
approach. Apart from specific objectives and corresponding
requirements, there are various goals and related issues that
should be widely agreed upon. An analysis of these objectives
is not only suited to identify shorcomings of existing systems,
but also to provide insights into how future systems could be
designed to represent significant progress.

A. Reuse

Reuse is of pivotal relevance for the economics of enterprise
systems. That does not only concern development costs, but
also the effort to adapt a system to changing requirements.
Especially in cases where reuse enables significant economies
of scale, cost reductions can be tremendous. Reuse of software
artefacts among a range of companies implies the identification
of common requirements. In other words: reuse depends on
abstraction – from specific peculiarities of certain systems
onto invariant commonalities shared by a range of systems.
A closer look at reuse recommends differentiating between
range and productivity of reuse, also known as the power-
generality trade-off [5]. The more specific a reusable artefact
is, the higher is its contribution to development productivity in
cases where it fits – the lower are, however, chances that it fits.
On the other hand, the more generic a reusable artefact is, the
higher is its potential range of reuse, hence, the achievable
economies of scale. Hence, there is need to find a proper
trade-off between power and generality or, certainly better,
to relax this conflict of goals. Even though the idea of reuse

is especially related to software artefacts, enterprise systems
should also promote the reuse of knowledge among its users.
This requires to account for diverse needs and abilities of users
(see Subsection II-B).

B. Accounting for Context and Perspectives

An enterprise system is not an end in itself. It is supposed
to support the business. That requires accounting for relevant
aspects of a company’s action system, such as corporate
goals, business processes, organizational structure, or decision
scenarios. If the relevant context is not represented in the en-
terprise system, it will usually be documented separately, more
or less accurate and reliable. This does not only create issues
with accessibility of relevant documents, but also with their
consistency. As a consequence, it is demanding to assess how
well IT and business are aligned. If a changing environment
demands for adapting the business or even the business model,
it is required to account for both, the enterprise system and a
company’s action system. Again, without a representation of
relevant aspects of its context, it requires additional effort to
provide for conjoint change of business and IT.

Large organizations depend on separation of concerns,
which translates to a variety of different professional per-
spectives that comprise specific goals, interests and technical
languages. To provide effective support, an enterprise system
should offer appropriate representations for all perspectives
relevant for its users. Appropriately designed user interfaces
that allow for individual adaptions are very useful in this
respect. However, they are hardly sufficient to help users with
gaining a deeper understanding of the system they use, the
company they work for, and how their work relates to the
work of others.

C. Reduction of Complexity and Need for Transparency

Enterprise systems are supposed to reduce an organization’s
complexity. At the same time, they contribute to a subtle
increase of complexity. Often, software systems penetrate
companies to a degree that many employees perceive their
work through the applications they use. In other words:
corporate reality is more and more constructed through en-
terprise systems. At the same time, to most employees the
software they use remains a black box. That is not only in
obvious contrast to the idea of enlightenment, which demands
for a demystification of the world that surrounds us, it is
also a threat to a company’s competitiveness, which requires
employees that are able to assess limitations and possible
modifications of the systems they use. In addition, enterprise
systems are part of ever growing IT infrastructures with a huge
amount of different elements and dependencies between these.
The resulting complexity is a clear threat to IT management
and, hence, to the efficient use of IT infrastructures.

D. Integration

Integration is a prerequisite of the efficient use of enterprise
systems. It requires accounting for various aspects. First, one
needs to distinguish static, functional and dynamic integration.

10 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

In all cases, integration requires the affected software systems
to communicate, which in turn requires common concepts, ma-
terialized, e.g., through datatypes, classes, database schemas,
interface types, event types, etc. Second, similar to reuse, there
is a conflict between generality and power to be accounted
for. The more specific common concepts are, in other words:
the more semantics they carry, the more efficient and safe
communication can be, hence, the higher is the level of
integration. However, the more specific concepts that enable
integration are, the more systems will be excluded. This
corresponds to the use of technical languages by humans. In
addition to common concepts, integration of software systems
also recommends the common representation of corresponding
instances in order to avoid redundancy, which in turn requires
common namespaces.

A further aspect of integration concerns organizational in-
tegration, which corresponds to IT-business alignment. Inte-
gration of this kind, too, requires common concepts shared
by the two worlds. If an enterprise system requires users
to know technical concepts such as file, record or module,
organizational integration will be weaker than it would be with
using domain-specific concepts users are familiar with. Like
reuse, integration requires abstraction – on common concepts
and from specific details that are peculiar to certain systems
or users.

E. Adaptability

The requirements an enterprise system should satisfy may
change over time. In this case, it is of crucial importance
that it can be adapted with little effort and risk. At best,
possible changes had been accounted for already, when a
system was first designed. Ideally, this would be reflected by
a software architecture that separates a presumably invariant
core from possibly variable parts. If the variable parts represent
monotonic extensions of the core, which is the desirable case
but not trivial to achieve, changes to variable parts would
not have side-effects on the core. The prerequisite of such an
architecture is abstraction. Only if one succeeds in abstracting
onto invariant properties of a system, these could be bundled in
an invariant core. In an ideal case, changes could be performed
by competent users without the need to dive into source code.

The quest for adaptability is confronted with a conflict
of goals, too. It is reflected by the notions of loose and
tight coupling. Loose coupling, which is favored by many
as an effective measure to achieve adaptability, aims at re-
ducing dependencies between components – in other words:
it builds on generic rather than on specific interfaces – to
facilitate their replacement. Abstracting onto commonalities
of a range of components creates dependencies: more specific
components chiefly depend on more generic ones. As long
as these dependencies are invariant, they are of no harm,
but of great benefit. All dependent components can be easily
changed by changing the common abstraction. Fig. 1 illustrates
the advantage of tight coupling in this case – and indicates
the problems that arise from abstractions that turn out to
be inappropriate. Related to that, there is another conflict to

account for. Adaptations of an enterprise system require some
kind of language. If this language is generic, as in the case
of a general-purpose programming language, a wide range of
changes is possible. However, changes of this kind are very
time-consuming and risky. On the other hand, a language
that clearly restricts changes is likely to reduce effort and
risk. Examples include approaches to configuration or domain-
specific languages (DSMLs).

Tight Coupling Loose Coupling

Generalisation invariant

Generalisation not invariant

additional
Element

Fig. 1. Comparison of tight and loose coupling

F. Preliminary Conclusions

Our brief overview of objectives that should be widely
undisputed reveals the following insights.

• Abstraction is of pivotal relevance. It is the prerequisite
of reuse, integration and adaptability.

• Conceptual models are a useful instrument for developing
abstractions of high quality. At best, they allow users
to participate in their development and evaluation. Con-
ceptual models could also serve as a representation that
competent users could change without the need to bother
with code.

• Semantics is likely to produce serious goal conflicts
that require painful trade-offs. Therefore, approaches that
allow mitigating these conflicts promise great benefits.
Generalization/specialization is an example of how such
a mitigations could work. At a higher level of gener-
alization, a wider range of (re-) use can be expected,
whereas more specific levels contribute to higher produc-
tivity, while they, at the same time, benefit from greater
economies of scale through reusing higher level concepts.

• To take advantage of powerful abstractions, languages are
required that provide concepts which allow for expressing
these abstractions. The examples in Fig. 5 illustrate
the problem. As we shall see, mainstream programming
languages – and modeling languages alike – are seriously
limited in this respect.

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 11

III. MULTI-LEVEL SELF-REFERENTIAL ENTERPRISE
SYSTEM

Our first vision of future enterprise systems emerged some
time ago. It was mainly inspired by our work on enter-
prise modeling. It was mainly focused on leveraging the
utility of enterprise modelin tools by integrating them with
enterprise software. Unfortunately, the vision suffered from
serious feasibility problems. Only later, as an outcome of our
research on multi-level language architectures, we were able
to further refine the vision and to substantiate the design with
an architecture that makes it feasible.

A. The Early Vision

The idea of enterprise modeling has been around for some
time [6], [7]. It is based on the assumption that an organisa-
tion’s information system and its action system call for con-
joint analysis and design in order to fully exploit the potential
of IT. Therefore our work on enterprise modeling was at first
focused on supporting early phases of enterprise systems’ life-
cycle. It resulted in a method for multi-perspective enterprise
modeling (MEMO, for an overview see [8]), which includes
various domain-specific modeling languages (DSMLs), e.g.
for modeling corporate goals [9], [10], IT infrastructures
[11], organisation structures [12], business processes [13],
and decision processes [14]. These languages are integrated
through a common meta-metamodel and common concepts.

Since the proper use of DSMLs as well as the analysis and
management of enterprise models demand for supporting tools,
we put considerable effort into the development of modeling
tools [7], [15], [16]. An enterprise modeling environment such
as MEMO4ADO [16] does not only allow to create the various
particular models, e.g., business process models, goal models
or models of the IT infrastructure. It also integrates them,
thus, ensuring referential integrity of modeling elements and
allowing for cross-model analysis, e.g., by allowing to navigate
from a business process model to all resources that are required
for its execution. Fig. 2 shows an overview of diagram types
produced with MEMO4ADO and illustrates their integration
through common concepts.

These benefits of a traditional environment for enterprise
modeling are contrasted with serious limitations. First, models
focus on the type level only. This is for a good reason. Usually,
we want to intentionally fade out particular instances, since
they are changing all the time. However, there are analysis
scenarios where instances are important. For example, one
may want to know how many instances of a certain business
process types were exectuted within a certain month, or when a
particular instance started. Other examples include the number
of invoices or the invoice with the highest amount etc. To
answer questions related to the instance level, one would have
to use a corresponding enterprise system. If this system is not
integrated with a corresponding enterprise model, it would not
be possible to nagivate from one system to the other – an
obvious obstacle to decision making.

There is a further reason for integrating an enterprise mod-
eling environment with an enterprise system. The development

Fig. 2. Elements of MEMO4ADO

of an enterprise model requires considerable effort. Also, parts
of an organizational information system are always in the
state of change. Even a smoothly working IT infrastructure
and well-designed business processes create the need for
corresponding models in order to cope with complexity – no
matter whether they are in an early or late state of their life-
cycle Hence, in order to not waste valuable resources and to
enable additional benefits, we came to the conviction that it
should be possible to use enterprise models during the entire
life-cycle of a company and its information system, both as an
instrument to support management and as a means to empower
all employees by improving transparency.

This idea led quickly to the vision of integrating enterprise
models – more precisely: tools for enterprise modeling –
with enterprise software. We referred to this vision as “self-
referential enterprise system” (SRES) [17]. An SRES results
from the integration of an enterprise modeling environment
and a corresponding enterprise software system. In an ideal
case, developers and competent users could apply changes
to parts of an enterprise model which then would become
effective in the enterprise system.

To develop a demonstration of an SRES, we aimed at
extending an existing enterprise modeling environment accord-
ingly. Unfortunately, we soon had to realize that there were
serious problems standing in the way of integrating the two
systems. These problems were caused by principal limitations
of implementation languages.

B. Challenges

These limitations create serious challenges to the design
of SRES. They mainly comprise two interrelated aspects.
First, mainstream programming languages do not allow for
the straightforward implementation of modeling environments
that represent instance level data. Second, related to that,
modeling languages that are based on a MOF-like architecture

12 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

do not allow for expressing knowledge about instances. The
first aspect is illustrated in Fig. 3. It shows a UML class that
is conceptually located at M1. However, within a modeling
tool, it is implemented as an object at M0. This is for a
serious reason. A modeling tool needs to allow defining and
changing the properties of a class. However, only objects have
state, which can be manipulated. As a consequence, it is not
possible to create instances of classes within a model editor.
The only option is to generate code – resulting in two separate
representations.

Program instance

name: String
isAbstract: Boolean

Class

name: String
type: String

Attribute

yearsOfAge() : Integer

firstName: String
lastName: String
custID: String
dateOfBirth: Date

Customer

includes

specializedFrom

0,*

0,1

0,* 1,1

class Customer

{

 String firstName;

 String lastName;

 Date dateOfBirth;

 public int yearsOfAge()

....

}

generate

Modeling Environment Programming Environment

M1

M0
M1

M0

represented as object on M0

represents class on M1

M2

M1

conceptual level

actual implementation levelM

M

Fig. 3. The need for generating code

As a consequence of these limitations, the architecture we
developed with our first conception of SRES was based on
a pragmatic notion of integration. At first, concepts defined
within an SRES had to be replicated in the corresponding en-
terprise system. That could, at best, be achieved by generating
code from models. Then, both systems had to be integrated
through interfaces that allow requests made in one system to be
forwarded to the other system. If, e.g., a user who studies the
model of an IT infrastructure within the enterprise modeling
tool wants know what instances of a certain platform type
exist and where they are located, the corresponding interface
should allow to send this request transparently to the enterprise
system. At the same time, a process manager who is not
happy with the performance of a certain business process
could navigate to the corresponding process model in the
enterprise modeling environment, where he might decide to
change the model, which should then lead to the adaptation
of the corresponding process schema in the enterprise system.
Fig. 4 shows an outline of the corresponding architecture.

It is needless to say that we were not satisfied with this
solution. It reflects a poor concept of integration that requires
ongoing synchronization. Since new requirements often need
to be implemented under time pressure, it is likely that changes
are directly applied to code, which over time leads to a de-
preciation of the corresponding model. In addition, the second
problem, namely the lack of expressiveness of modeling lan-
guages, could not be overcome with the proposed architecture.
An enterprise modeling environment needs to offer DSMLs.
Otherwise users would have to model goals, business processes
etc. from scratch, which would not only cause inacceptable

effort, but would also be a threat to integrity. The concepts
provided by a DSML serve the specification of types or
classes. Fig. 5 shows fragments of two possible DSMLs and
corresponding models. The concept of a printer may be part of
a DSML to model IT infrastructures, whereas the concept of
an activity may be offered by a DSML for modeling business
processes.

Unfortunately, it is not possible to express that a particular
printer has a serial number or a certain number of printed pages
with the DSML, even though we know that these properties are
required. Accordingly, we cannot express the knowledge that a
particular business process has a start time and end time, since
corresponding attributes would apply to a certain business
process type, not to its instances. To express this knowledge, it
would have to be added redundantly to every instance of the
metaclasses Printer or Activity. However, even such
a dissatisfactory approach would not allow to subsequently
create particular instances within a model editor – for the
reasons illustrated in Fig. 3.

A closer look at the model fragments in Fig. 5 reveals
a further challenge. The specification of a metaclass like
Printer has to be done from scratch requiring the language
designer to know essential properties of a printer. Would it not
be more appropriate to use an existing, more generic DSML
that already includes a general concept of printer to define
printer models? As we shall see such an approach would
contribute to the more efficient development of DSMLs and
would, at the same time, be suited to improve their quality.

IV. MULTI-LEVEL LANGUAGE ARCHITECTURES TO THE
RESCUE

To cope with the limitations of the MOF architecture,
we extended our previous meta modeling language with so
called “intrinsic features” that allow to define features such as
attributes in a meta class at M2, hence as part of a DSML,
which are to be instantiated only with an instance at M0. This
extension allowed, e.g., to express the fact that a particular
printer has a serial number (see Fig. 5) with a DSML by
characterizing the corresponding attribute as intrinsic. Unfor-
tunately, this was little more than a Pyrrhic victory, since
intrinsic features could not be expressed by common object-
oriented programming languages. Furthermore, the extension
was limited to M2 and there were indications already that
higher levels of classification might be useful.

The back then young field of multi-level modeling, a term
introduced more than twenty years ago by Atkinson and Kühne
[18], with ancestors that go back even further, cf. [19]–[22],
promised to address our needs more convincingly. However,
multi-level modeling languages were not accompanied by
corresponding programming languages, which we needed for
our purpose. Then, about 15 year ago, a discussion at a con-
ference dinner lead to a solution. The XModeler, a language
engineering environment developed by Clark et al. [23], [24]
proved to feature a language architecture that was suitable for
a convincing implementation of SRES. Encouraged by these
prospects, we started the project “Language Engineering for

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 13

M0

M1

Schema Layer

create, modify, delete

integrated class schema
(representation of

modelling languages)

Modelling Layer

create, edit, associate,
navigate models, perform
analysis & transformation

object models, business
process models, workflow

models ...

Persistency Layer

store & retrieve objects, workflows, ...

Runtime Layer

create, modify, delete,
workflow manager, GUI

manager
objects, workflows, ...

Schema Layer

create, modify, delete
class schema(ta),

workflow schemata, ...

Persistency Layer

store & retrieve objects, workflows, ...

M2

workflow schema
„Order

Management“

instances of
„Order

Management“

workflow
model „Order
Management“

Meta Schema Layer

establish, delete
association ...

„Activity“
(BPMN)

„Process“
(Workflow

Model Editor)Enterprise Information System

Enterprise Modelling Environment

instance of

corresponds to

Fig. 4. Outline of early architecture of SRES

PrinterPrinter

pagesPerMin: Integer
resolution: Integer

serialNo: String

Mit diesen Tipps fertig?

Wählen Sie den Tippbereich aus, und

drücken Sie ENTF.

Design

Farbe kann Klarheit und Eleganz erzeugen.

Wählen Sie auf der Registerkarte "Entwurf" ein

Design aus.

Multiplizität ein-/ausblenden

Klicken Sie mit der rechten Maustaste auf einen

Verbinder, um die Multiplizität in

Klassenbeziehungen anzuzeigen.

Vorlagenparameter ein-/

ausblenden

Um einen Parameter hinzuzufügen, klicken Sie

mit der rechten Maustaste auf das Klassen-

Shape, und wählen Sie "Vorlagenparameter

anzeigen".

HP200HP200

pagesPerMin = 100
resolution = 600
weight = 14.5

ActivityActivity

automated: Boolean
outsourced: Boolean

startTime: Time

CheckOrderCheckOrder

automated = true
outsourced = false
maxDur = 12.5

DSML

Model

weight: Float

pagesPrinted: Integer
?

?

maxDur: Time

endTime: Time

?

?

Fig. 5. Limited expressiveness of traditional languages

Multi-Level Modeling” (LE4MM, www.le4mm.org), which
is still running today. For a brief history of the project
see [25].

A. XModelerMLand FMMLX

While the XModeler does not feature a multi-level lan-
guage, its metamodel, XCore, could be easily extended to

enable essential features of a multi-level language: an arbi-
trary number of classes with an explicit level and deferred
instantiation of properties such as attributes or operations.
This extension led to the specification and implementation of
FMMLX, a multi-level modeling language [26]. Different from
other multi-level modeling languages such as LML [27] or M-
Objects [28], FMMLXis executable, that is, it features a com-
mon representation of models and corresponding programs.
The implementation of FMMLXin the XModeler led to the
XModelerML. It is, together with various additional resources
such as screencasts and publications, available on the project’s
webpages at www.le4mm.org.

The language architecture enabled with the FMMLX allows
to overcome the lack of expressiveness traditional language
architectures suffer from. The small FMMLX model in Fig. 6
corresponds in part to the example in Fig. 5. It illustrates how
knowledge that cannot be expressed with traditional languages
can be represented without redundancy.

The class Product at level 3 serves the definition of prop-
erties that apply to all kinds of devices. The class Printer
in part inherits these properties, in part instantiates them.
Therefore, a specialization hierarchy would not be sufficient.

14 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

Level

Delegation

Instantiation Level

Slot Value

Constraint Report

Constraint

Operation Value

Palette

link

Fig. 6. Example FMMLX model created with the XModelerML

The number printed in white in a black rectangle next to
an attribute or operation is to indicate the level where it is
supposed to be instantiated or executed. The fact that every
class is an object is, on the one hand, illustrated by slot
values, such as 100 for pagesPerMin in the object HP200,
which represents a printer model at level 1. On the other
hand, it is shown by the values returned from the operation
invoiceTotal() executed by instances of the classes
Invoice, HX500 or Person. In other words: an FMMLX

model is executable. The objects it consists of can be displayed
in a diagram editor, either with a standard or a customized
notation, or by using an object browser or a customized GUI.
To strengthen the integrity of the model – and of the executable
program simultaneously – the FMMLX allows for adding
constraints to classes, which are then immediately evaluated
as soon as corresponding instances are created or changed. For
exampole, the constraint limit in Invoice defines that the
total of an invoice must not exceed 5.000, which is violated
by the object invoice1.

The model also shows that multi-level models overcome
the traditional distinction of modeling language and model.
As soon as a class is created, it extends the palette and can

be used to create further instances. Furthermore, there can
be links between objects at any level. A language, which is a
model at a higher level, can be changed at runtime, which leads
to an immediate update of the affected models. Note, however,
that changes at higher levels can be challenging. Therefore, it
is of crucial importance that concepts represented in a multi-
level model are the more invariant the higher they are located
in the hierarchy [29].

An arbitrary number of classification levels is enabled
by a reflexive and recursive metamodel that specifies and
implements the FMMLX. Fig. 7 shows the simplified meta
model with a few selected constraints. Since Class inherits
from Object, every class in the system is an object, has
state and can be executed. FMMLX objects are instantiated
from MetaClass. With their instantiation they are assigned
an object of the Level. It allows to either define a specific
level through an integer or to define a range of possible values
in case the level of a class should be contingent [30]. Deferred
instantiation of properties such as attributes, operations or
associations is enabled through the attribute instLevel that
serves the definition of the intended instantiation level. For a
more comprehensive description of the metamodel, the related

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 15

instantiation mechanism as well as the overall architecture of
the XModelerML see [31], [32].

The XModelerML, which is provided as open source, and
multiple resources including screencasts, publications and
example models are available on the LE4MM webpages at
www.le4mm.org.

B. A Foundation for Self-Referential Enterprise Systems

A multi-level language such as the FMMLX and a corre-
sponding language engineering and execution environment as
the XModelerML provide a powerful foundation for SRES.
First, they allow a common representation of models and
programs. Hence, there is no need for the synchronization of
two different representations. Users of an SRES can navigate
from the software they use to corresponding models and meta
models. If they are qualified and authorized, they may also
change a model with the effect that the software they use is
instantly changed, too. A multi-level model of an enterprise
may be comprised of multiple DSMLs, which are defined at
different levels. Since these DSMLs are all executable, they
are domain-specific programming languages at the same time.

Such a language architecture supports reuse and adaptabil-
ity. The knowledge represented in DSMLs can be reused. If a
DSML does not fit specific needs, the language it was specified
with can be used to define a new customized DSML. This
alllows to benefit from economies of scale supported by high
level DSMLs and to benifit from the productivity provided by
more specific DSMLs, thus relaxing a crucial design conflict.
An SRES would then be based on a multi-level model and a
corresponding runtime environment. In addition, there would
be a component that serves making object models persis-
tent and supports object retrieval. Further components would
enable presentation and interaction. Since the XModelerML

supports the MVC pattern, multiple views could be added to
predefined diagram and browser views. Fig. 8 shows a highly
simplified representation of the architecture.

C. Illustration

At an operational level, an SRES would provide GUIs
similar to those known of today’s ERP systems. These allow
to access objects at level 0, that is, objects that represent data
about particular entities or aggregations of these. In addition,
an SRES would allow users to navigate to elements of the
integrated enterprise model, which are typically located at
level 1. These models can be presented in diagram editors
featuring a standard or a customized graphical notation. In
addition users could also be offered textual representations of
these models. In case, users are overwhelmed by distinguishing
different levels of abstraction, they could also be provided with
a more traditional GUI that allows for accessing objects at
different levels without the need to understand the notion of a
classification level. For those users and administrators who
want to understand or eventually change the DSMLs used
to specify the models, an SRES would allow for accessing
the full multi-level model representing an SRES. It could be
represented by diagrams, within an object browser or in text

editors. The dotted edges between selected elements of the
different layers are to indicate that all these representations
are integrated, since they are only different views of the same
multi-level system. Fig. 9 illustrates how the various levels of
abstraction covered by a multi-level SRES can be presented
to users.

D. Brief Evaluation

Instead of a comprehensive evaluation of multi-level ar-
chitectures which can, e.g., be found in [31], I will focus
on a few essential aspects only, referring to the objectives
described in Section II. The integration of enterprise software
with a corresponding enterprise model is obviously suited
to empower users, since they have a much better chance
to understand and eventually change the software they deal
with. Since an SRES provides an integrated representation of
company’s action system and its information system, users are
also supported with aligning business and IT. The complexity
inherent especially to larger organizations is reduced by mod-
els that were created with DSMLs. The common representation
of models and programs allows for doing without two separate
representations. This does not only foster referential integrity,
but also supports protection of investments into models, which
otherwise are likely to be devaluated over time. Adapting
an SRES to changing requirements is, at best, facilitated by
applying changes at a higher level in the hierarchy only once
instead of repeatedly at lower levels. In addition, a multi-
level architecture also fosters reuse and, hence, economics
of acquiring and managing enterprise systems. Furthermore,
it also promotes cross-organizational integration of enterprise
systems. Integration depends on common concepts. If, e.g.,
company A sends a message to company B referring to
the particular printer model ”HP200”, communication would
fail, if the software company B is using does not know a
corresponding class. Within a traditional scenario, there would
be no way to a apply a usefull interpretation of an unknown
class. It would just be some class. In case of a multi-level
architecture, there would be the chance to identify it as some
kind of printer, if the corresonding class was known by B.

In light of these attractive prospects, it does not seem too
daring to claim that multi-level architectures are suited to make
enterprise software clearly more powerful. This claim leads to
the obvious question why multi-level architectures have not
taken off yet. There are various reasons for this unpleasant
situation. First, the benefits of multi-level architectures are
not easy to understand. Second, for legitimation reasons de-
cision maker tend to opt for mature mainstream solutions.
Multi-level systems are definitely not mainstream. Existing
implementations of development and execution environments
are restricted to academic prototypes. Third, there may be
principal objections against multi-level modeling, since it may
seem strange to those who are used to languages that are
rectricted to one classification level only. Multi-level models
provide indeed features unknown of in traditional modeling
and programming languages. Not only that they allow for
an arbitrary number of classification levels and regard all

16 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

hasBody
1..1

hasReason
1..1

hasParents
0..*

^Class^

XCore::Classifier

default: Element[0..1]
hasType1..1

0..*1..1 hasAttributes

isRestrictedTo

^XCore::Class^

FMMLx::MetaAdaptor

new(level: Level): Element

^XCore::Class^

FMMLx::Level

maxLevel: Integer[0..1]

minLevel: Integer[0..1]

^Class^

XCore::Object

checkConstraints(): ConstraintReport

^XCore::Class^

FMMLx::FmmlxObject

level: [FMMLx::Level]

^Class^

XCore::NamedElement

name: String[0..1]

^Class^

XCore::Class

constructors: Seq(Constructor)[$0..*]

delegatesTo: Class[0..1]

isAbstract: Boolean[0..1]

XCore::Package

^Class^

hasClasses 0..*

0..1

includes 0..*

1..1

FMMLx::FmmlxPackage

^XCore::Class^

sourceLevel: Integer[4..4]

sourceMult: Element[0..1]

targetLevel: Integer[4..4]

targetMult: Element[0..1]

^XCore::Class^

Associations::AssociationType

^MetaAdaptor^

FMMLx::MetaClass

isSingleton: Boolean[0..1]

2..2

^Class^

XCore::Operation

codeBox: Element0..1]

isComposite: Boolean[0..1]

arity: Integer[0..1]

isIntrinsic: Boolean[0..1]

instLevel: [FMMLx::Level]

^Class^

XCore::Constraint

instLevel: [FMMLx::Level]

^Class^

XCore::Attribute

instLevel: [FMMLx::Level]

init: Operation[0..1]

isIntrinsic: Boolean[0..1]

mult: Multiplicity[1..1]

XCore::TypedElement

^Class^

has operations 0..*

0..1

has constraints

0..*

1..1

0..*1..1 hasAssociationTypes

visible: Boolean[0..1]

^XCore::Class^

Associations::End

2..2

1..1

hasEnds

^AssociationType^

Associations::Aggregation

^AssociationType^

Associations::DefaultAssociation

^AssociationType^

Associations::Composition

assocName: String[1..1]

^XCore::Class^

Associations::AbstractAssociation

isDescendantOf(Element):Boolean

allAncestors(): Set(Class)

get(attName:String): Element

Fig. 7. Meta model of FMMLX

Runtime

P
e

rs
is

te
n

cy

Multi-Level Model

SRES

7

5

6

Presentation

▪ interactive diagrams
with customized
notations

▪ standard GUIs

▪ text editors

Fig. 8. Sketch of multi-level architecture of SRES

classes as objects, they also blur the boundary between a
language and its application. Therefore, it seems appropriate
to speak of a paradigm shift. However, as the example in
Fig. 10 shows, natural languages and especially technical
languages in advanced societies evolve in a hierarchical order.
The introduction of a new technical language is usually based
on a refinement of existing technical languages.

A further objection against multi-level architectures relates
to their complexity. It is indeed clearly more demanding to
develop a multi-level model than a traditional model. However,
that is the case, too, for developing a compiler-compiler
compared to a developing a compiler, or for developing a

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 17

Traditional GUI of
Enterprise System

L0

Graphical Models,
specific GUIs or
text editors to

access models of
the enterprise and
of the enterprise

software

L1

Multi-level model
of the SRES

presented as
diagram or in a

browser

L2+

Fig. 9. SRES from user perspectives

GUI builder compared to designing a particular GUI. Reduc-
ing complexity implies increasing it first. Those who design
multi-level models are confronted with remarkable complexity,
especially in cases where requirements vary to a large extent.
Those, however, who use an existing multi-level model and fit
it to more specific needs benefit from a level of complexity that
is certainly lower than that of creating a UML class diagram
from scratch or dealing with representations that are used for
the configuration of ERP systems.

Apart from these obstacles there are a few specific pecu-

liarities and restrictions that prevent the outlined multi-level
architecture of SRES from being a silver bullet. First, the key
features of a language engineering, modeling and execution
environment like the XModelerML, such as an arbitrary number
of classifiation levels and executable objects at any level are
possible only through dynamic typing. Despite these obvious
advantages, dynamic typing is sometimes met with reserva-
tions. Type checking happens at runtime only and, compared
to languages that feature static typing, the code carries less
information. It is, for example, not possible to determine the

18 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

<Class>
Organisational Unit

<Class>
Position

<OrganisationalUnit>
Department

<OrganisationalUnit>
Team

<Position>
Market Analyst

<Department>
Marketing Department

<Quality Circle>
 QC Databases

Market Analyst
MA Asia

<Team>
Market Research Team

<Class>
Committee

<Committee>
Quality Circle

<Department>
Department of Physics

<Dean>
Dean of Physics

<Faculty Council>
Physics Faculty Council

<OrganisationalUnit>
Department

<OrganisationalUnit>
Institute

<Position>
Dean

<Committee>
Faculty Council

<Department>
Foreign Office

d
o

m
ai

n
 s

p
e

ci
fi

c
la

n
gu

ag
e

„t
ex

t
b

o
o

k“
„l

o
ca

l d
ia

le
ct
“

specified
concept

language
concept

Fig. 10. Multiple levels of concepts in natural language

class of an object a message is sent to in a straightforward
way. We believe that this potential advantage of statically
typed languages is more than offset by the specific benefits of
languages that feature strong dynamic typing. Languages like
Smalltalk have demonstrated these benefits long ago. Looking
back, it is regrettable that Smalltalk was sidelined primarily
because the hardware available at the time was unable to
compensate for the disadvantages. For a revealing discussion
of the specific advantages of dynamic typing and its historical
obstacles see this interview with Alan Kay [33]. It is needless
to say that performance is not an issue anymore with today’s
hardware. Second, the design of a multi-level model requires
to carefully decide for a trade-off between flexibility and
integrity, which is not trivial [34] (see also Subsection II-E).

Nevertheless, the realization and maintenance of multi-level
language architectures is challenging. A multi-level hierarchy
is extremely useful for maintaining a system as long as the
dependencies reflected by the hierarchy – lower level objects
depend existentially on higher level classes – are invariant over
time. Therefore, the design of multi-level models requires a
high level of expertise and great care. Otherwise, the advantage
turns into a serious problem. A further aspect is of utmost
relevance with respect to the power of multi-level language
architectures. So far, multi-level models are widely restricted
to static and, to a lesser degree, functional abstractions. It
is much harder to define multi-level semantics for dynamic
abstractions, e.g. process models. There are important reasons
for this, such as the fact that specialization of process types
cannot be defined as monotonic extension of a super process

type. As a consequence, the substitutability constraint cannot
be satisfied – with serious implications for the maintenance
of larger process landscapes. There are a few contributions
to multi-level process modeling, e.g., [35], [36], [37], [38],
but their main focus is on abstracting on static or functional
aspects of processes. While the missing support for dynamic
abstractions does not invalidate the benefits gained from multi-
level static abstractions, it clearly emphasized the need for
corresponding research.

V. CONCLUSIONS AND FUTURE RESEARCH

While ERP systems are of pivotal relevance for many com-
panys’ competitiveness, only little research on future enterprise
software systems happens in academia. At the same time,
progress of commercial systems remains modest, at least with
respect to principal functionality. Enterprise modeling, on the
other hand, has seen more than two decades of research in
academia, but only little adoption in business. Nevertheless,
the potential benefits of enterprise models are widely undis-
puted. The presented architecture of SRES is suited to promote
the utilility of enterprise models and, at the same time, improve
the power of enterprise software. While the implementation of
SRES is widely impossible with prevalent language technolo-
gies, multi-level languages and corresponding development
and execution environments provide a solid foundation for that
purpose. In addition to enabling SRES, multi-level language
architectures also allow for enriching other types of software
with additional abstraction.

Our future research is primarily characterized by two di-
rections. On the one hand, we will continue to work on
concepts that allow for multi-level dynamic abstractions. In
doing so, we are thinking about developing a relaxed con-
cept of specialization. On the other hand, our work aims to
simplify the transition to multi-level modeling by supporting
the step-by-step enrichment of a UML editor with further
concepts up to the XModelerML. A first prototype of this
UML editor, called “UML-MX” is available on the project’s
webpage at https://www.wi-inf.uni-due.de/LE4MM/uml-pp/.
Among other things, it allows the instantiation and execution
of objects from a UML class diagram within the model editor.

REFERENCES

[1] M. H. Eich, “Mars: The Design of a Main Memory Database Ma-
chine,” in Database Machines and Knowledge Base Machines, ser.
The Kluwer International Series in Engineering and Computer Science,
Parallel Processing and Fifth Generation Computing, M. Kitsuregawa
and H. Tanaka, Eds. Boston, MA: Springer, 1988, vol. 43, pp. 325–
338.

[2] R. B. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap,” in Workshop on the Future of Software
Engineering (FOSE ’07), L. C. Briand and A. L. Wolf, Eds. IEEE CS
Press, 2007, pp. 37–54.

[3] A. C. Bock and U. Frank, “Low-Code Platform,” Business & Information
Systems Engineering, vol. 63, no. 6, pp. 733–740, 2021.

[4] J. Cabot, “Positioning of the Low-Code Movement within the Field
of Model-Driven Engineering,” in Proceedings of the 23rd ACM/IEEE
International Conference on Modell Driven Engineering Languages and
Systems. IEEE, 2020, pp. 535–538.

ULRICH FRANK: MULTI-LEVEL LANGUAGE ARCHITECTURES AS A FOUNDATION FOR ADVANCED ENTERPRISE SYSTEMS 19

[5] A. C. Bock, “The Power/Generality Trade-Off in Decision and Problem
Modeling: Theoretical Background and Multi-level Modeling as a Res-
olution,” in Enterprise, Business-Process and Information Systems Mod-
eling, ser. Lecture Notes in Business Information Processing, J. Gulden,
I. Reinhartz-Berger, R. Schmidt, S. Guerreiro, W. Guédria, and P. Bera,
Eds. Cham: Springer International Publishing, 2018, vol. 318, pp. 213–
228.

[6] J. A. Zachman, “A Framework for Information Systems Architecture,”
IBM Systems Journal, vol. 26, no. 3, pp. 276–292, 1987.

[7] U. Frank, Multiperspektivische Unternehmensmodellierung: Theoretis-
cher Hintergrund und Entwurf einer objektorientierten Entwicklung-
sumgebung. München: Oldenbourg, 1994.

[8] ——, “Multi-Perspective Enterprise Modeling: Foundational Concepts,
Prospects and Future Research Challenges,” Software and Systems
Modeling, vol. 13, no. 3, pp. 941–962, 2014.

[9] S. Overbeek, U. Frank, and C. A. Köhling, “A Language for Multi-
Perspective Goal Modelling: Challenges, Requirements and Solutions,”
Computer Standards & Interfaces, vol. 38, pp. 1–16, 2015.

[10] A. Bock and U. Frank, “MEMO GoalML: A Context-Enriched Modeling
Language to Support Reflective Organizational Goal Planning and De-
cision Processes,” in Conceptual Modeling: 35th International Confer-
ence, ER 2016, I. Comyn-Wattiau, K. Tanaka, I.-Y. Song, S. Yamamoto,
and M. Saeki, Eds. Cham: Springer, 2016, pp. 515–529.

[11] U. Frank, M. Kaczmarek-Heß, and S. D. Kinderen, “IT Infrastructure
Modeling Language (ITML): A DSML for Supporting IT Management.
ICB Report No. 71, University of Duisburg-Essen.”

[12] U. Frank, “MEMO Organisation Modelling Language (1): Focus on
Organisational Structure.”

[13] ——, “MEMO Organisation Modelling Language (2): Focus on Busi-
ness Processes. ICB Research Report No. 49., University of Duisburg-
Essen,” 2011.

[14] Alexander Bock, “Beyond Narrow Decision Models: Toward Integrative
Models of Organizational Decision Processes,” in Proceedings of the
17th IEEE Conference on Business Informatics (CBI 2015), D. Aveiro,
U. Frank, K. J. Lin, and J. Tribolet, Eds., Lisbon, 2015.

[15] J. Gulden and U. Frank, “MEMOCenterNG – A Full-Featured Modeling
Environment for Organisation Modeling and Model-Driven Software
Development,” in Proceedings of the 2nd International Workshop on
Future Trends of Model-Driven Development (FTMDD 2010), 2010.

[16] A. Bock, U. Frank, and M. Kaczmarek-Heß, “MEMO4ADO: A Com-
prehensive Environment for Multi-Perspective Enterprise Modeling,” in
Proceedings of the Modellierung 2022 Satellite Events, J. Michael,
J. Pfeiffer, and A. Wortmann, Eds. Bonn: GI, 2022, pp. 245–255.

[17] U. Frank and S. Strecker, “Beyond ERP Systems: An Outline of Self-
Referential Enterprise Systems: Requirements, Conceptual Foundation
and Design Options. ICB Research Report No. 31. University of
Duisburg-Essen,” Essen.

[18] C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,”
in UML 2001 - The Unified Modeling Language. Modeling Languages,
Concepts, and Tools, ser. Lecture Notes in Computer Science, M. Gor-
golla and C. Kobryn, Eds. Berlin and London, New York: Springer,
2001, pp. 19–33.

[19] J. J. Odell, “Power Types,” Journal of Object-Oriented Programming,
vol. 7, no. 2, pp. 8–12, 1994.

[20] R. C. Goldstein and V. C. Storey, “Materialization,” IEEE Transactions
on Knowledge and Data Engineering, vol. 6, no. 5, pp. 835–842, 1994.

[21] A. Pirotte, E. Zimányi, D. Massart, and T. Yakusheva, “Materialization:
A Powerful and Ubiquitous Abstraction Pattern,” in Proceedings of the
20th International Conference on Very Large Data Bases, ser. VLDB
’94, J. B. Bocca, M. Jarke, and C. Zaniolo, Eds. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc, 1994, pp. 630–641.

[22] M. Jarke, S. Eherer, R. Gallersdörfer, M. Jeusfeld, and M. Staudt,
“ConceptBase – A Deductive Object Base for Meta Data Management,”
Journal of Intelligent Information Systems, vol. 4, no. 2, pp. 167–192,
1995.

[23] T. Clark, P. Sammut, and J. S. Willans, “Super-Languages: Developing
Languages and Applications with XMF (2nd ed.),” CoRR, 2015.
[Online]. Available: http://arxiv.org/abs/1506.03363

[24] T. Clark, P. Sammut, and J. Willans, Applied Metamodelling: A Foun-
dation for Language Driven Development, 2nd ed. Ceteva, 2008.

[25] U. Frank and T. Clark, “Language Engineering for Multi-Level Modeling
(LE4MM): A Long-Term Project to Promote the Integrated Development
of Languages, Models and Code,” in Proceedings of the Research
Projects Exhibition at the 35th International Conference on Advanced
Information Systems Engineering (CAiSE 2023), ser. CEUR, J. Font,
L. Arcega, J.-F. Reyes-Román, and G. Giachetti, Eds., 2023, pp. 97–
104.

[26] U. Frank, “The Flexible Multi-Level Modelling and Execution Language
FMMLX. ICB Research Report No. 66. University of Duisburg-Essen,”
Essen.

[27] C. Atkinson and R. Gerbig, “Flexible deep modeling with melanee,”
in Modellierung 2016, 2.-4. März 2016, Karlsruhe - Workshopband,
ser. Modellierung 2016, S. B. U. Reimer, Ed., vol. 255. Bonn:
Gesellschaft für Informatik, 2016, pp. 117–122. [Online]. Available:
http://subs.emis.de/LNI/Proceedings/Proceedings255/117.pdf

[28] B. Neumayr, K. Grün, and M. Schrefl, “Multi-level domain modeling
with m-objects and m-relationships,” in Proceedings of the 6th Asia-
Pacific Conference on Conceptual Modeling (APCCM), S. Link and
M. Kirchberg, Eds. Wellington: Australian Computer Society, 2009,
pp. 107–116.

[29] U. Frank, “Prolegomena of a Multi-Level Modeling Method Illustrated
with the FMMLX,” in Proceedings of the 24th ACM/IEEE International
Conference on Modell Driven Engineering Languages and Systems:
Companion Proceedings. IEEE, 2021.

[30] U. Frank and D. Töpel, “Contingent Level Classes: Motivation, Concep-
tualization, Modeling Guidelines, and Implications for Model Manage-
ment,” in Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems: Companion
Proceedings, E. Guerra and L. Iovino, Eds. New York, NY, USA:
ACM, 2020, pp. 622–631.

[31] U. Frank, “Multi-level Modeling: Cornerstones of a Rationale,” Software
and Systems Modeling, vol. 21, no. 1, pp. 451—-480, 2022.

[32] T. Clark and J. Willans, “Software Language Engineering with XMF and
XModeler,” in Computational linguistics, I. R. Management Association,
Ed. Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pa.,
17033, USA): IGI Global, 2014, pp. 866–896.

[33] S. Feldman, “A Conversation with Alan Kay,” Queue, vol. 2, no. 9, pp.
20–30, 2004.

[34] U. Frank and T. Clark, “Peculiarities of Language Engineering in Multi-
Level Environments or: Design by Elimination,” in Kühne (Ed.) 2022 –
Proceedings of the 25th International, pp. 424–433.

[35] B. Neumayr, C. G. Schuetz, and M. Schrefl, “Dual deep modeling of
business processes: 7:1-31 pages / enterprise modelling and information
systems architectures (emisaj), vol. 17 (2022),” 2022.

[36] A. Lange and C. Atkinson, “Multi-level Modeling with LML. A Con-
tribution to the MULTI Process Challenge,” Enterprise Modelling and
Information Systems Architectures (EMISAJ), vol. 17, pp. 1–36, 2022.

[37] M. A. Jeusfeld, “Evaluating DeepTelos for ConceptBase: A Contribution
to the MULTI Process Challenge,” Enterprise Modelling and Informa-
tion Systems Architectures (EMISAJ), vol. 17, 2022.

[38] U. Frank and T. Clark, “Multi-Level Design of Process-Oriented En-
terprise Information Systems,” Enterprise Modeling and Information
Systems Engineering (EMISAJ), vol. 10, pp. 1–50, 2022.

20 PREPROCEEDINGS OF THE FEDCSIS. BELGRADE, SERBIA, 2024

