.: DuEPublico

Multi-per spective enter prise modelling: background and terminological
foundation

Frank, Ulrich
In: ICB Research Reports - Forschungsberichte des ICB / 2011

Thistext is provided by DuEPublico, the central repository of the University Duisburg-Essen.

Thisversion of the e-publication may differ from a potentia published print or online version.

DOI: https://doi.org/10.17185/duepublico/47068

URN: urn:nbn:de:hbz:464-20180918-071248-6

Link: https://duepublico.uni-duisburg-essen.de/servlets'DocumentServl et?i d=47068

License:
Aslong as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage
only with permission, except applicable rules of german copyright law.

Source: |CB-Research Report No. 46, December 2011

https://doi.org/10.17185/duepublico/47068
http://nbn-resolving.org/urn:nbn:de:hbz:464-20180918-071248-6
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47068

& _ IcB
V Institut fur Informatik und
Wirtschaftsinformatik

Ulrich Frank

Multi-Perspective Enterprise Modelling:
Background and Terminological Foundation

UNIVERSITAT |CB-Research Repor’r No. 46

DUISBURG
ESSEN December 2011

Die Forschungsberichte des Instituts
fiir Informatik und Wirtschaftsinfor-
matik dienen der Darstellung vorldu-
figer Ergebnisse, die i. d. R. noch fiir
spatere Verdffentlichungen {iberarbei-
tet werden. Die Autoren sind deshalb
fiir kritische Hinweise dankbar.

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica-
tions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Ubersetzung, des Nachdru-
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen — auch bei
nur auszugsweiser Verwertung.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Authors’ Address:
Ulrich Frank

Lehrstuhl fir Wirtschaftsinformatik

und Unternehmensmodellierung

Institut fir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

D-45141 Essen

ulrich.frank@uni-due.de

ICB Research Reports
Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff

Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke
Prof. Dr. Volker Gruhn

PD Dr. Christina Kliiver
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Miiller-Clostermann
Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Enrico Rukzio
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

Contact:

Institut fiir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

45141 Essen

Tel.: 0201-183-4041
Fax: 0201-183-4011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

“A surprisingly large number of terms in the information system
area have been coined by suppliers of IT products and services,

or by pseudo scientists.”

The FRISCO Report

Abstract

In Information Systems, enterprise modelling has been a pivotal field of research that has
evolved over a period of more than 20 years. In recent years, the main research focus was on
adapting approaches to enterprise modelling to changing requirements, e.g. provide support
for IT management. To develop a better understanding of the motivation, objectives and
concepts that are characteristic for enterprise modelling, it is important to study the termino-
logical background. On the one hand, it builds the foundation for the conceptualisation of
enterprise models, on the other hand, it helps to clarify the semantic relation of the term “en-
terprise model” to terms in its surroundings such as “information system”, “conceptual
model” etc. This report is aimed at developing conceptualisations of respective terms. Start-
ing with more generic terms like “domain”, “model” or “information system”, the course of
the investigation gradually moves forward to “conceptual model”, “action system”, and “en-
terprise model”. Finally, an elaborate conception of multi-perspective enterprise models is
presented that is intended to characteristic aspects of their structure, the intentions related to

them and preconditions of their reflective use.

Table of Contents

FIGURES..

TABLES ...

1 INTRODUCTION.......

I

1A%

2 DOMAINS, MODELS - AND ABSTRACTION ..

3 INFORMATION SYSTEMS.

3.1 DATA, INFORMATION AND KNOWLEDGEcccecittteeuiteerieeeniieeeieeeesteesssreesesseesssssesssssesssssssssssessssssessssees

3.2 A MULTI-PERSPECTIVE CONCEPTION OF INFORMATION SYSTEMSc..ceeteruiruieneerienreetenseeeenseeeeneeenes

3.2.1 Focus on Purpose

3.2.2 Focus on the Artefact ...

3.2.3 Focus on Integration and REUSE............ccouvvviviviiiiiiiiiiiiiiiis s

3.2.4 Images of INfOrmation SYSLEMScoooviiiiiiiiiiiiiiii s

4 CONCEPTUAL MODELS AND MODELLING LANGUAGES

4.1 CONCEPTUAL MODEL..........

4.2 GENERAL PURPOSE AND DOMAIN-SPECIFIC MODELLING LANGUAGEScocterveeienieeienreeeeneeeeeseeenes

4.3 ABSTRACTION CONCEPTS....

4.3.1 General Considerations.

4.3.2 Prevalent Abstraction CONCEPLS.........cvvvviiuiiiiiiiiiiiiiiiiietiitcett s

4.3.3 Appropriate Abstraction: S0me POSHUIALESccovviviciiiiiciiiiciiciiciicieccece e

4.4 DIAGRAM AND DIAGRAM TYPE....ccccttieeiieeeiteeeiieeesteeesteeesseeesssteessssesesssessssssesssssesssssessssseessssesesssseesns

45 ONTOLOGY .oovvreeieernereeeeennns

4.6 REFERENCE MODELS.............

4.7 META CLASSES AND META IMODELScc.cieittieieeetieeieeseeseteesteesseesseesseasseessseesssesssessssssssesssessssssssssssees

4.8 METHOD AND MODELLING METHODuttrittirteeitenieerieenteesitesteesseessessseesaeeesseesaeessseesssessseessessseesneeas

5 ENTERPRISE MODELLING

5.1 CONCEPTIONS OF THE ENTERPRISEccceeettesteeiueesseessueesseesseesseessseessessssesssesssesssessssessssessssssssssssassseenns

5.2 ENTERPRISE MODELS............

5.3 ENTERPRISE ARCHITECTURE

6 CONCLUDING REMARKS.

REFERENCES

ii

10

10

12

14

20

22

22

26

29

29

30

33

35

36

37

39

40

41

41

43

47

48

49

Figures

FIGURE 1: ILLUSTRATION OF CREATING INFORMATION BY ENRICHING DATA WITH REFERENCES TO CONCEPTS

F A] 5 2 G 1 N 8
FIGURE 2: LEVELS OF STATIC INTEGRATIONc.uveeitteiteeeiveesseesseesseesseesseesssesssessssesssesssssessssssssssssssssssssessssssssessssens 16
FIGURE 3: LEVELS OF DYNAMIC INTEGRATION ...ccecutteiettteeiureeenureeesseeeaseeeaseesssssesssssessssssesssssesssssesssssessssssessssseens 17
FIGURE 4: ILLUSTRATION OF INSTANCE-LEVEL INTEGRATIONeeeetteittenternieerieenreeneeesseeseeesseesssessseesssessseeseens 17
FIGURE 5: EXAMPLE OF POOR ORGANISATIONAL INTEGRATIONc..eteitteriersieerieenieeneeenseeseeesseessessseessessseesaeens 19
FIGURE 6: IMPACT OF REFERENCES TO DOMAIN OF DISCOURSE FOR MEANING OF A CONCEPTUAL MODEL....... 25
FIGURE 7: SEMIOTIC RECTANGLE, ADAPTED FROM SEMIOTIC TRIANGLE ...c..ceruteiiruteeeriieneeeieneeeeesseeneesseeeesseenes 26
FIGURE 8: ILLUSTRATION OF MAPPING FROM CONCEPTUAL MODEL TO CODE THROUGH GPML....................... 28
FIGURE 9: ILLUSTRATION OF MAPPING DSML TO DSPLooouiiiiiiiiieieteeeeeeete ettt 29
FIGURE 10: COMBINING ADVANTAGES OF REFERENCE MODELS AND DSML.......cccooiriiiiniiiieieeeieeeeeeeene 38
FIGURE 11: EXEMPLARY REPRESENTATION OF AN ENTERPRISE MODEL.......cceeeiiieeiieeeniieeenieeesieeeesseeseneeessnneens 46

iii

Tables

TABLE 1: DIFFERENT KINDS OF INTEGRATION
TABLE 2: OVERVIEW OF ABSTRACTION CONCEPTS

TABLE 3: BENEFITS OF ABSTRACTION CONCEPTS ..

iv

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

1 Introduction

Language is the essential tool of all scientific investigation. It provides us with concepts that
allow us to structure a subject of interest, i. e. to conceptualize and analyze it. Like any other
tool it will often be adapted to the task — and we need to adopt it. In Information Systems
(“Wirtschaftsinformatik”), language is of outstanding importance for a further reason. In-
formation systems are linguistic artefacts. Hence, designing and using them requires appro-
priate languages. The design and use of information systems will often involve people that
speak different technical languages, which results in the need to foster communication be-
tween these different parties — by providing appropriate languages. In the area of research
that forms the background of this report — enterprise modelling — language, especially do-
main-specific modelling languages (DSML), is the core research topic. This includes both, the
thorough analysis of existing technical languages with respect to certain purposes and the
(re-) construction of new languages. For such a field of research, it seems obligatory to be
especially demanding when it comes to its own terminological foundation. However, core
terms such as “model”, “enterprise model”, “integration”, “method” etc. are often not pre-
cisely defined. This may be contributed to the impression that the meaning of these basic
terms is widely evident. Unfortunately, this impression is inappropriate. This report was
originally intended to provide my students with a glossary of key terms in the area of enter-
prise modelling. However, my early attempts to develop brief and concise definitions of core
concepts lead to the insight that this would - in many cases — require simplifications that
might compromise a deeper understanding. Therefore I decided to aim at more elaborate
conceptions — at the risk to alienate those who would rather expect a glossary of terms that

could serve as an authoritative reference.

2 Domains, Models — and Abstraction

The term DSML implies the description of a corresponding domain. Examples of domains
include application areas of certain classes of software systems, e.g. data warehouse systems
or geographical information systems. Other domains are characterized by technical systems,
e.g. automobiles or aeroplanes, that are in part controlled by software. Further domains may
be constituted by the peculiarities of certain software systems, e.g. the domain of developing
video games. As with other basic terms that we use every day, reflecting upon the term
“domain” produces an ambivalent insight: It seems that there is no need for a clarifying def-
inition because everybody seems to have an appropriate understanding of the term. At the
same time, a comprehensive definition seems hardly possible, because it would require re-
ferring to other concepts, the meaning of which is more precise — and more common. Against
this background the following description is rather an attempt to characterize the term than

to define it.

Domains, Models — and Abstraction

A domain is a subject area or a field of interest. It is not restricted to existing objects or
phenomena, but may also include potential objects or phenomena. A domain can be
characterized by the objects it includes, features of these objects, or functions provided
by the objects. Objects include physical objects, human actors, and immaterial objects.
With respect to our key topic — modelling — it is important to realize that thinking of a do-
main will usually imply abstraction: To characterize it, we need to identify features we are
interested in and/or fade out those that are of no relevance. Regarding a domain as an ab-
straction has two important implications: First, it means that a domain may cover a range of
actual and potential systems that are characterized by common features. Second, it means
that the level of abstraction related to the conception of a domain may vary substantially.
Note that our conception of domain is clearly different from the use of the term in database

theory, where it represents a set of uniform data that serves the specification of attributes.

V77

Even more than “domain”, “model” is a pivotal term in our field — and in many other fields,
too. Although many textbooks provide generic definitions, a closer look reveals that a com-
prehensive definition is hardly possible. One reason for that is the heterogeneous use of the
term in different disciplines. According to a prevalent definition often cited in various disci-
plines (see exemplarily (Stachowiak 1973)) a model is an abstraction that was created with a
certain purpose in mind. Purposes include analysis, planning, forecasting, explanation, de-
sign, decision making etc. Often, such a conception is related to the idea of an original that is
represented by the model. The act of abstraction is often seen as a deliberate simplification by
fading out certain properties of the original while others are mapped to the model. Such a
conception of “model” works fine in many cases. However, it is not entirely convincing. This

is for various interrelated reasons:

No clear distinction of model and original: The prevalent conception of model is built on the as-
sumption that a model can be clearly distinguished from an original — and it suggests that a
model can be identified as such. However, this is not necessarily the case. Mahr points to the
fact that any (physical) object can be regarded as a model, in the sense of a prototypical in-
stantiation. At the same time, no “thing” has to be a model, because being a model is not an
inherent feature, but depends on an interpretation — and there may be interpretations that do
not regard a “thing” as a model that may from other perspectives look as such ((Mahr 2009),
p. 232).

Naive realism: It seems perfectly in line with the common understanding of modelling to re-
gard a model as the result of representing selected aspects of an original. Nevertheless, such
a conception reflects a naive view of the problem. It includes the assumption that the consid-
ered domain has an objective existence of its own independent of its observer (ontological
presupposition) and the assumption that we are able to perceive it as it actually is (epistemo-
logical presupposition). This position, referred to as “naive realism”, does not account for
three aspects. First, a domain can hardly be regarded as an original in the sense of something

real. Instead, the conception of a domain itself is based on an abstraction (see above). Second,

2

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

the domains we consider include patterns of (social) action (see below). Even if one assumes
that they exist independently from the observer (which is, of course, impossible to prove), it
is hard to imagine that one can perceive and conceptualize them as they actually are. While
this argument may appear as a mere philosophical sophistry, it has a clear impact on the way
we develop, interpret and evaluate models. This will become clearer when we account for
action systems and the role of language (see below). It remains to add that this critique does
not apply to Stachowiak even though he is often used as a reference for justifying a naive
conception of models. Instead, he is an explicit opponent of naive realism and regards “reali-
ty” as a construction ((Stachowiak 1973), p. 285, (Stachowiak 1983)).

Mapping as a problem: The idea of mapping selected features of an original to a model reveals
a further problematic implication of naive realism. First, it is usually accompanied by a con-
straint that seems reasonable: Not any mapping should result in a model. Instead, it should
preserve characteristic features of the original. In other words: It should resemble the origi-
nal. Usually, this quality constraint is related to the idea of a “homomorphous” mapping
which results in a model that preserves the structure of the original. However, as long as we
cannot prove that our perception of the original is correct and complete, it is impossible to
prove that a mapping is homomorphous. In a strict sense, this implies that any mapping can

be claimed as homomorphous without the risk of refutation ((Zelewski 1995), p. 25).

Lack of an “original”: Often, there is no original in a strict sense. Instead, we focus on domains
which depend on abstractions (see above). In addition to that, we may sometimes want to
overcome the limitations of existing practice. As a consequence, a corresponding model does
not represent something existing on purpose. As we shall see, this aspect is of particular rel-

evance for modelling in the realm of Information Systems.

Mainly as a reaction to the problem of distinguishing a model per se from an original, Mahr
concludes that traditional techniques of disambiguation (“Begriffsklarung”) do not allow for
answering the question “What is a model?” ((Mahr 2009), p. 232). Instead, he suggests that
the interpretation of a “thing” as a model should depend on an informed judgment about
“model being” (“Modellsein”, ibid, p. 235). Other authors aim at a concept of model that
avoids the fallacies caused by naive realism. They emphasize that the idea of mapping from
an original is not appropriate. Instead, they suggest regarding models as constructions (e.g.
(Klein and Lyytinen 1992), (Floyd 1992). Ortner speaks of constructions, too, but uses the
term “artefact” rather than “model” ((Ortner 1997), p. 11). Schiitte emphasizes an important
feature of constructions to qualify as a model - in correspondence to Mahr’s later suggestion:
Following up on a line of thought presented by ((Stegmdiller 1986), p. 15), he speaks of a
model as a construction that is explicitly declared as a model ((Schiitte 2000), p. 6).

Against this background, I suggest a preliminary definition of features that are characteristic
for an artefact to serve as a model. It is not restricted to the assumption that there is an origi-
nal. Instead, it is assumed that a model is related to a domain. As a consequence, it does not

reduce a model to a mapping — even in cases where an “original” exists.

3

Domains, Models — and Abstraction

A model in general is a construction that results from purposeful abstractions of a do-

main.
It may seem that mental models are not covered by this definition, since they seem not to be
constructed by human beings. Instead, they happen to be there to determine human thinking
and action. However, even if one is not a follower of the Radical Constructivism ((Maturana
1987), (Maturana and Varela 1987), (Glasersfeld 1995)), one may regard mental models as the
result of a biological/chemical construction process that serves some biological purpose. Fur-
thermore, we may regard the concept of mental model as a purposeful construction, an idea
that is aimed at helping us with a better understanding of human cognition. According to the
latter interpretation a mental model would not exist before somebody has developed the
idea of such a construct — which in turn raises the Kantian question how one can develop an
idea without having some corresponding concept, i. e. a mental model, already. Since specif-
ic characteristics of mental models as unconscious results of biological processes are not in
the scope of our investigation (which does not mean that they are irrelevant to us!), we will

refine the general concept of a model to that of a model as an artefact:

A model as an artefact is a representation that results from a purposeful and conscious
construction. It is perceivable and can be communicated. The abstractions it is based on
depend on the purpose of the construction, mental activities of those involved in the
construction and additional external stimuli and constraints.
Note that the idea of a given purpose that exists independently from a corresponding model
is an intentional simplification. Usually, the meaning of a purpose will be shaped by a con-
tinuous act of interpretation that accompanies the act of modelling. From now on, we will
use the term “model” in the sense of “explicit model”. Note that the above definition gives
no clues about the quality of a model. At the same time, we can assume that the benefit to be
expected from a model will chiefly depend on its quality. Judging the quality of a model is
far from trivial — especially, if one gives up the assumptions of naive realism that recom-
mend comparing a model against an original. Since the pivotal focus of this report is on con-
ceptual models, we will get back to the issue of model quality after the introduction of con-

ceptual models.

Characterizing a model as a construction serves to stress that it is not just a mapping of the
“original” (if that exits anyway), but instead the result of a creative act which is influenced
by cognitive abilities, expectations, language, technologies etc. Different from definitions that
restrict the notion of a model to purposeful constructions, I also characterize them as an ab-
straction. With respect to a precise, clearly discriminating definition of “model” this may be
regarded as a daring move since it seems to imply a precise definition of “abstraction” —
which would be a hopeless undertaking. Nevertheless, it is possible to describe features of
and intentions related to abstraction. At the same time, regarding abstraction as an essential

characteristic adds meaning to the notion of a model as a construction. First, it allows for

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

distinguishing models from similar constructions such as photographs, realistic paintings
etc. This corresponds to explicitly declaring a model as such!. Second, it underlines the need
for deliberately going beyond the ostensible properties of the targeted domain. Usually, this
act is related to fading out supposed properties that are not relevant for a given purpose.
However, this is not sufficient. Often, abstraction also includes deliberately changing or add-
ing properties to better serve the targeted purpose. The following examples illustrate this
thought: Different from the original, the toy model of a car may include an electric motor and
a remote control. Modelling persons may result in the abstraction “class of persons” with a
property such as “average weight”, which is not a property of a person, but a construction
for a certain purpose. Hence, there is a mutual relationship between the two notions con-
struction and abstraction. On the one hand, a construction is — in part — the result of an ab-
straction. On the other hand, the abstraction is a construction itself, in the sense that it creates
something new. Therefore a model does not have to be a simplification of the considered
part of a domain, nor does it have to represent a reduction of complexity at first sight. In-
stead, a model may even increase complexity by pointing at aspects that go beyond the obvi-
ous. However, as a consequence of making hidden, but nevertheless relevant aspects visible,
such a model will promote the ability to successfully reduce and handle complexity. The fact
that reduction of complexity often implies an increase of complexity first is well known from
building tools: In order to build a tool, one has to increase complexity — by analysing re-
quirements, resources, design options etc. Once the tool is implemented successfully, the
complexity of the affected tasks will be lower. “Purposeful” is to express two aspects. On the
one hand, it emphasizes that abstractions in this sense depend on conscious and intentional
acts. On the other hand, it underlines — in the sense of Maht’s proposal — that a model needs
to be deliberately created and introduced as such. This definition is rather generic (which
nevertheless does not imply the claim to cover all reasonable uses of the term) and does not

account for peculiarities of models in the area of Information Systems.

3 Information Systems

To further refine the conception of model for the field of Information Systems, we first focus
on information systems which are a key subject of modelling in our field. Most definitions of
information systems refer to “information” as a given term. While this will be sufficient in
most cases, focussing on a concept of information first helps with gaining more clarity about
the foundation and scope of information systems. Information is a key concept in many dis-

ciplines. We limit our investigation of the term to the realm of Information Systems.

! Note that a photograph or a “realistic” painting may include purposeful abstractions. But often, the

idea will be to capture an image that clearly corresponds to the original.

5

Information Systems

3.1 Data, Information and Knowledge

A classical, often cited definition of information was suggested by Shannon, a mathematician
and engineer (Shannon 1948). It is focused on determining the information transported in a
message. The information content of a symbol within a message depends on the probability
of its occurrence. While this formal information theory is of pivotal relevance for coding
messages efficiently, it is of little use for the conception of information in Information Sys-
tems, because it completely fades out the meaning for prospective users. Developing a con-
ception of information that is suited for Information Systems recommends discriminating it
against conceptions of data. A plethora of definitions aims at the relationship between these
terms. Others focus on the discrimination of information against knowledge. Especially in
the latter case, the amount of diversity and terminological inconsistency is remarkable. Data
is often regarded as a pure formal/technical representation. Information in contrast is created
through an interpretation of data that creates meaning for humans (for corresponding defini-
tions see for example (Laudon and Laudon 2005), p. 8, (Ferstl and Sinz 2005), p. 131). Infor-
mation is sometimes seen as a precursor of knowledge that has to be somehow refined;
hence knowledge is regarded as a special kind of information. In the German IS community
many authors refer to a definition by (Wittmann 1959) who described information as pur-
poseful knowledge, hence information as a special kind of knowledge (for example (Alpar,
Alt et al. 2011), (Heinrich, Heinzl et al. 2010)). Slightly different from that, the authors of the
FRISCO report suggest to regard information as “the knowledge increment brought about by
a receiving action in a message transfer, i. e. it is the difference between the conceptions in-
terpreted from a received message and the knowledge before the receiving action.”
((Falkenberg, Hesse et al. 1998), p. 66). At the same time, they regard data as “any set of rep-

resentations of knowledge” (ibid).

In accordance with many authors we regard data as symbolic representations. However,
with respect to our specific focus, we do not regard any symbol as data. Symbols are core
research subjects in various disciplines, especially in Semiotics. We regard “data” as a tech-
nical term of the Information Systems discipline. Due to the particularities of digitally repre-
sented data we suggest to restrict the term to digital representations that are stored in a
computer or corresponding peripheral devices. However, with respect to the differentiated
use of the term, such a conception remains too superficial. Therefore, we suggest refining it
with respect to the purpose. There are two interrelated purposes data should serve. On the
one hand, they are intended to represent something meaningful to prospective users, i.e. to
represent information (see below). On the other hand, they should allow for being processed

by a computer. Both aspects are related to the semantics of data. By semantics> we mean for-

2 Note that semantics is sometimes — especially in Philosophy — regarded as a study or theory of mean-
ing. Instead, we use the term according to Computer Science, where it is restricted to a formal inter-

pretation.

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

mal semantics. The formal semantics of data is specified through a corresponding specifica-
tion such as a data type. It defines the extension of possible occurrences (particular data of that

type) and the formal operations that can be performed on them.

Data are digital representations that allow for being stored on and processed by a digi-

tal computer. The structure and formal semantics of data is defined by a corresponding

data type.
This definition may seem to be too restrictive since it does not include representations which
are not assigned a type. However, sequences of bits are completely useless as long as they
are not grouped into words that are assigned to types. The more restrictive a data type is,
hence: the more possible interpretations it excludes, the higher the level of semantics it speci-
fies.> As we shall see, this aspect is of pivotal relevance for information system integrity and
integration. But even specifying data with data types is not sufficient for the efficient use of
data: defining data as “Integer” or “String” still leaves an unacceptable wide range of possi-
ble interpretations. Only, if data is clearly related to the information it is supposed to repre-
sent, users have a chance to understand its intentional semantics?, i. e. its meaning. This leads to
an important consequence: Data without references to mental models of prospective users is
meaningless. Different from pure formal rules of interpretation that constitute formal seman-
tics, intentional semantics depends on the intension a human relates to the use of a term
when communicating with others — which in turn depends on the language he speaks, i. e.
the mental models, i. e. the cognitive concepts he uses, and his experiences (see (Habermas
1984), p. 311).

In general, information is created by symbolic representations — either discrete or continuous
— that are suited to carry meaning for humans. Note that this does not mean that information
is regarded as such by everybody — only by those who are able to relate it to a meaningful
interpretation. Also, it does not mean that sender and receiver of information have to relate it
to the same meaning (which to determine would require an adequate equivalence relation).
The meaning of a representation is not embedded in the representation itself. Instead, it is
created through references to objects or phenomena (such as behaviour, sentiments, action

etc.), a user of this representation can perceive and corresponding concepts a user is familiar

3 Note that in Computer Science, “semantics” is sometimes used as a Boolean predicate: There is se-
mantics defined for an expression or it is not. We do not object to this use of the term. However, in

accordance with a common practice in Computer Science, we also distinguish levels of semantics.

¢ The term “intentional semantics” is not used consistently. In Software Engineering, it is common to
distinguish the extensional definition of a class (by defining the set of its instances) from an intentional
definition (by defining the features shared by all its instances). Note, however, that an intentional def-
inition in this case allows producing an extensional definition, too (by calculating the extension of a

class from the extensions of the types of its attributes).

7

Information Systems

with. This is typically achieved by using assertions in a language the user speaks. For exam-
ple:

“John Smith is a Student”

“John Smith has the matriculation no. IS-79281”

/AT

Data often do not represent assertions explicitly, but omit predicates like “has”, “is a” etc.
Nevertheless, a human observer may be able to associate data with corresponding assertions.
A reference to an object without a corresponding concept does not — literally — make much
sense. On the other hand, information may be restricted to references to concepts only. For
example: “A customer is assigned zero to many invoices.” Information is based on difference:
An assertion is suited to carry information if it identifies specific cases out of wider range of
possible cases. Hence, it defines a difference from possible constellations. In the realm of our
investigation, information systems, we refine the concept of information by relating it to da-
ta. In other words: We focus on information that is represented through digital media. This

specific conceptualisation of information is reflected in the following definition:

Information evolves from data through an act of human interpretation. Interpretation
is enabled by additional references to objects or phenomena and corresponding mental
models (cognitive concepts). A reference can be established by strings that represent
words of a language or graphical depictions. A reference may be limited to concepts.

The examples in Figure 1 illustrate the relationship of data and information. A table that con-
tains digital data without any reference (example on the left hand side) hardly serves as in-
formation. Only if it is enriched with references (to the concept “Student” and to particular
students), users may assign meaning to it and hence use it as information. Note that the rep-
resentation on the right does not qualify as information per se. This is only the case, if it is
observed by humans for whom the added designators work as adequate references. This

conception of information corresponds to the semiotic rectangle.

mental models
(concepts)

Student

|
reference to
,John’ ,Smith’ ,1S-79281' FirstName | LastName | Matriculation
,Jane’ ,Miller* [,I1S-61692' ,John’ ,Smith’ ,1S-79281'
,Jane’ ,Miller* ,1S-61692'
reference to (identifier)

Figure 1: Illustration of creating information by enriching data with references to concepts and

objects

8

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

This conception of information has an implication that is — as we shall see later — important
for the conception of information systems: Information is not restricted to a certain represen-
tation on some medium. Instead, information is a cognitive construct that results from a con-

struction that is triggered by references to cognitive models.

Note that the conception of information as a cognitive construction serves to emphasize the
need for interpretation. Often, a relaxed use of the term “information” will be satisfactory: If
data is represented with terms well known in a domain of discourse, we can refer to it as
“information” directly. With respect to the utility of information, its content is important.
The content of information relates to the difference from the expected. The more surprising
information is, the higher its content. In other words: The more likely the interpretations are
that are excluded by a piece of information, the higher its information content — and the more
important its potential value for decision making. If an assertion represents a tautology, its
information content is zero. The closer it gets to contradicting accepted assertions, the higher

its information content.
The following examples illustrate this thought:

“Tom, the cat, is white.”

“All cats are white.”

“William White, a seasoned computer scientist, has never written a line of code.”
“Martin Mellas, a lyric poet, has never written a line of code.”

The first assertion excludes only Tom from being not white. The second excludes possible
interpretations that are much more likely: that there are cats which are not white. Further-
more, the second assertion allows inferring the colour of a particular cat. At the same time,
however, it is apparently not true. The third example comes as a surprise. For some, it will
even contradict their conception of computer scientist. The fourth example, however, does

not come as a surprise, but will probably correspond to many people’s idea of a lyric poet.

Similar to “information” the term “knowledge” is not only used extensively in everyday
speech but also largely overloaded. As already outlined above, there is no coherent use of the
term “knowledge” in Information Systems either. It seems to be more suitable to regard
knowledge as a special kind of information than the other way around: In the first case,
knowledge would always be regarded as information. In the second case, there would be
knowledge that does not qualify as information — which seems strange. We suggest a concep-

tion of knowledge that is inspired by scientific knowledge.

Knowledge is characterized as information that represents a higher level of abstraction
and satisfies the claim for justification. A higher level of abstraction means that it is not
restricted to one particular case only, but covers a range of single cases.
The claim for justification reflects a rational assumption: Assertions, which are in principle
refutable and that survived serious attempts to refute them, can — at least preliminary — be

regarded as true.

Information Systems

The sentence “All cats are white” would qualify as knowledge with respect to the claim for
abstraction. I would, however, fail to be supported by a convincing justification. If a justifica-
tion is considered as convincing depends on the respective culture. As a consequence, the
classification of information as knowledge may vary with the cultural surroundings. From
an epistemological point of view, justification depends on various concepts of truth such as

the correspondence, the coherence or the consensus theory (Kiinne 2003).

3.2 A Multi-Perspective Conception of Information Systems

There is a plethora of definitions of the term “information system”. The complexity of infor-
mation systems makes it difficult to develop a definition that is both distinctive and compre-
hensive. At the same time, a discipline such as Information Systems requires an elaborate
conception of its core research subject. To cope with the resulting challenge, we will suggest
a conception of information system that makes use of various perspectives, which supple-
ment one another. In a similar approach, Olivé proposes three perspectives on information
system that are combined to a more comprehensive definition. The three perspectives relate
to the contribution of information systems, their structure and behaviour and the functions
they perform ((Olivé 2007), p. 1). The approach suggested here includes similar aspects, but
adds further aspects that go clearly beyond Olivé’s definition. Note that we do not advocate
a conception of an information system that excludes traditional media such as paper. Never-
theless, our main focus will be on computer-based systems. This is for two reasons: First,
computer-based systems are already of pivotal relevance in most enterprises — and they can
be expected to further penetrate organisations. Second, computer-based systems are not only

of high complexity, but have specific peculiarities.
3.2.1 Focus on Purpose

Most definitions focus on the functions, an information system is supposed to provide. Typi-
cal examples are the conceptions suggested by Chaffey and Wood who define an infor-

"

mation system as an instrument to gather, process, store, use and disseminate infor-
mation" ((Chaffey and Wood 2005), p. 43) or by Bernus and Schmidt: “An information sys-
tem is a system for collecting, processing, storing, retrieving, and distributing information
within the enterprise and between the enterprise and its environment.” ((Bernus and Schmidt

2006), p. 2)

To develop a more differentiated appreciation of the functions, an information system fulfils
in organisation, it is useful to distinguish essential use contexts or perspectives. Laudon and
Laudon distinguish three different kinds of information systems with respect to their pur-
pose: “operational-level systems”, “management-level systems” and “strategic-level sys-
tems” ((Laudon and Laudon 2005), p. 43). While this wide-spread differentiation makes
sense for analysing specific functions and associated data to be provided by an information

system, it does not allow for distinguishing essentially different functions of an information

10

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

system in an organisation. The following differentiation is aimed at this purpose. It differen-
tiates three principle perspectives on the functions of information systems: information sys-
tems as instrument of information management, as organisational and management instrument and
as medium of cross-organisational communication and collaboration. Information management is
aimed at improving organisational performance by supporting sourcing, creation, mainte-
nance and preparation of information. This includes assigning information to tasks, caring
for the appropriate, user-specific representation of information, providing for convenient
access to information. In addition to that, information management has to account for infor-
mation quality, confidentiality, trust, reliability etc. Last but not least, information manage-
ment has to somehow assess the economics of information, i. e. relate the cost of information
provision to its prospective benefit. An information system is a pivotal instrument for infor-
mation management. On the one hand, it defines the type of data that is regarded as relevant

in an organisation, on the other hand it is essential for making information accessible.

An information system serves the effective support of prospective users by represent-
ing, storing, processing, retrieving and supplying data that serve its users as infor-
mation. To provide information in a way that fits particular tasks and cognitive capa-
bilities, it may allow for adapting the presentation of data to specific tasks and/or roles.
To fulfil these purposes, an information system has to support data integrity and to
provide mechanisms for protecting data.

To promote the appropriate and efficient handling of information it is also required to assist
users with developing corresponding competencies and attitudes, e.g. with respect to infor-
mation awareness, information sharing etc. An information system may include features that

also support these people-oriented tasks of information management.

Some authors propose a conception of information system that explicitly includes human
actors as carriers and transmitters of information (e.g. (Schwarzer and Krcmar 2004)). With
respect to the outstanding relevance of information available through humans only, such a
wide conception makes sense. In other words: It would be naive assuming that all infor-
mation that is relevant in organizations is explicitly stored on some media. Nevertheless, we
prefer a narrower conception of the term that is focused on digital, computer-based systems,
but does not entirely exclude the use of traditional, e.g. paper-based, media. This is for two
reasons: First, from an Information Systems perspective we regard information systems as
artefacts that are designed and maintained using software engineering methods. This focus
is for a good reason: The complexity of information systems as artefacts is remarkable and
requires a specific expertise. However, an engineering perspective is not appropriate for
humans as potential parts of information systems. Second, information created and provided
by humans suggests a different perspective that accounts for facilitators and inhibitors of
information sharing, such as interest and power, the function of images, metaphors, story-
telling and gossip. Note that preferring a narrow conception of information system does not
mean to deny the relevance of human actors for providing, disseminating and using infor-

mation in organisations. Furthermore, an information system is not an end in itself. Its con-

11

Information Systems

ception always requires accounting for the organisational action system it is supposed to
support, i.e. for human action and (cross-organisational) collaboration. This aspect is empha-

sized in the following definition.

An information system represents rules for performing activities such as processes
and decisions. This includes the definition of tasks, processes, roles, obligations and ac-
cess rights. Therefore, an information system is an instrument for organizing the firm.
A similar definition is proposed in the FRISCO report where an information system is re-
garded as “a sub-system of an organisational system, comprising the conception of how the
communication- and information—oriented aspects of an organisation are composed”
((Falkenberg, Hesse et al. 1998), p. 72 {.).

Intra-organisational communication and collaboration is more and more based on the use of
information systems. Customers or other external actors may access a company’s infor-
mation system directly to retrieve information or to start transactions. Collaboration between
organisations can be further promoted by establishing cross-organisational workflows. Inter-
actions between an organisation and its environment may thus be more and more represent-

ed by interactions between corresponding information systems.

An information system may serve as a medium to enable communication and collabo-
ration with external actors, thus contributing to the realisation of inter-organisational
systems.

This aspect emphasises the need for enabling information systems to communication across

organisational border, i.e. to integrate them (see 3.2.3).
3.2.2 Focus on the Artefact

The previous definitions focussed on functions and effects, thus widely avoiding a descrip-
tion of what an information system consists of. Including this aspect in our investigation rec-
ommends adding a further perspective on information systems that concerns their essential

structure or — in other words: the “substance” they are made of:

An information system is a linguistic construction. It consists of two principle layers: a
schema and corresponding instances. The schema defines the formal semantics of the
instances managed by an information system. The schema is implemented with lan-
guages that can be translated to the instruction set of a processor without the loss of
semantics. A schema can be an instance of a further, higher-level schema.

At first sight, the above viewpoint may be regarded as trivial: Information systems are im-
plemented by some kind of implementation language. However, emphasizing the linguistic
foundation of an information system means more than that. The semantics of implementa-
tion languages are based on abstractions of machines, i. e. the data representations and in-
struction sets provided by micro processors. For an information system to serve the purposes
discussed above, this kind of languages is not sufficient. This is for two reasons. On the one

hand, constructing an information system from basic data types and generic functions only

12

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

will usually imply an unacceptable effort. Instead, there is need for concepts on a higher lev-
el of semantics, preferable directly related to a certain domain, that can be used for construct-
ing an information system. On the other hand, describing an information system with do-
main-level concepts is required to give users a comprehensible image of the system. Note
that the concepts used for documentation purposes do not have to correspond directly to the
concepts used for constructing the system. Nevertheless, these concepts are constitutive for
the perception and - literally — conceptualisation of an information system. The schema may
also include implementations of operations on these data. Note that it is possible — and some-
times beneficial — that an information system has more than two layers of abstraction. The
higher the level of semantics featured by the schema, the better are the chances to keep data
in a consistent state, i. e. the more possible interpretations are excluded, the better are the
chances to prevent illegitimate states. The following examples illustrate this thought: If cus-
tomer revenues are specified as floating point numbers, negative values are possible. To ex-
clude this threat to integrity, one could restrict the range of possible values — either through
an appropriate data type or through an additional integrity constraint. If the purchase price
of a product must never be larger than the retail price, this could be enforced by a corre-
sponding constraint. If data that represents a particular aspect of the respective domain is
stored more than once, we speak of data redundancy. Data redundancy causes an additional

effort for updating data, which results in a threat to data integrity.

From a traditional engineering perspective, an information system consists of linguistic arte-
facts such as application systems, components or objects. The behaviour of an information

system results from the interaction of the artefacts it is made of.

An information system is composed of artefacts on different levels of detail and ab-

straction. The composition of artefacts is based on interfaces which represent common-

alities.
Distinguishing different levels of abstraction is essential for the construction of information
systems. In particular, the dichotomy of instances and types (or classes respectively) is char-
acteristic for most information systems, since it is implied by prevalent programming lan-
guages. Note that we will use the terms “class” and “type” widely synonymously in this
report. That does not mean that we regard them as equivalent. Both in Logic and in pro-
gramming languages, there are clear differences between the two terms. However, for our
consideration it is sufficient to not further distinguish between types and classes. A type de-
fines the properties that are characteristic for a set of corresponding instances. Thus, it allows
for changing an instance population according to the constraints defined with their common
type. The differentiation of types and instances corresponds to the differentiation of schema
and occurrences (instantiations), which is often a constituent part of information system ar-
chitectures. Note that “type” and “instance” represent a role of an object within an instantia-
tion relationship. A type may be regarded as an instance of a meta type (see 4.7). A schema

defines structural and maybe functional and dynamic properties or corresponding instantia-

13

Information Systems

tions. Hence, it allows for describing a system on a higher level of abstraction without ac-

count for specific states of the system.

The engineering perspective reminds of the construction of machines or buildings. Similar to

these, it also demands for an architecture.

An information system architecture is an abstraction of an information system. Hence,
it is a model, which represents the structure of a system, i. e. how it is built from func-
tional units and how these interact. Different from conceptual models used in system
analysis and design domain-specific particularities are usually faded out. An infor-
mation system may be represented by different architectures.
The conceptualisation of interfaces as “plugs” is useful to some extent only. A deeper under-
standing of information systems requires a more elaborate conception of interface. Unlike a
“plug”, an interface may have to cover a wide range of concrete constellations that corre-
spond to an elaborate, abstract schema. Regarding interfaces as contracts enables a further
perspective on information systems that stresses aspects that are not only relevant from an

engineering point of view.

Information systems are constituted by patterns of contractual interactions. Each par-
ticipating artefact needs to comply with a contract that defines its responsibilities. A
contract can be more or less rigorous.
While some design methods, e.g. “design by contract” (Meyer 1997), demand for making
contracts explicit, contracts are often used implicitly, if they are used at all. However, there
are explicit or implicit constraints, which can be regarded as contractual assertions, too. They
comprise e.g. features of classes or pre- or postconditions. Integrity demands for restrictive
contracts, while flexibility demands for less-restrictive contracts. Coping with this conflict

constitutes one of the major challenges of information systems research (see below).
3.2.3 Focus on Integration and Reuse

There are two further aspects that are essential for information systems design: integration
and reusability. They account for the fact that information systems are often complex artefacts
that include various components, such as software modules or application systems. While
integration has been a key design objective for information systems for long, the term “inte-
gration” is often used without introducing a specific concept of integration. Generic defini-
tions of integration as they can be found in dictionaries usually emphasize the composition
of a whole from initially separate parts. For developing a differentiated appreciation of inte-
gration in Information Systems, such a definition is not of much help because it does not ac-
count for the peculiarities of IT artefacts. Integrating two IT artefacts, e.g. two components or
two application systems, is aimed at enabling them to collaborate. Collaboration implies a
common subject. In a general sense, two components collaborate on a common subject, if
they can both access and modify it. Hence, one component is affected by the other compo-

nent modifying the common subject. Since information systems are linguistic artefacts, ac-

14

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

cessing common subjects requires communication, which in turn implies common concepts

or a common language. We also speak of a common semantic reference system.

Communication between IT components can be differentiated with respect to the subject,
which can be static (data), functional (functions, services) or dynamic (processes). Further-
more, we can distinguish direct and indirect communication. If the primary subject of com-
munication is data, then two components can either directly exchange data, e.g. by passing
messages, or indirectly, e.g. by changing data in a common data store. In both cases, the par-
ticipating components need to have a common concept of the shared data. If communication
is focussed on functions, direct communication implies that one component calls a function
or service provided by the other component. In the case of indirect communication, a public
function is used by both components to access and modify common data. In this sense read
access to a public function, e.g. to a time service, would not enable integration. Integration
that makes use of common functions allows for a higher level of abstraction. This effect, re-
ferred to as information hiding or encapsulation, is of crucial importance for system flexibil-
ity. Using indirect communication instead of direct communication also enables a higher
level of abstraction by abstracting from the receiver of a message. Finally, integration on a
dynamic level means that respective components are enabled to collaboratively execute a
process. In the case of direct communication, a component would respond to a notification,
e.g. an event, emitted by another component by continuing the common process. Indirect
communication would require a central control unit that receives all relevant events and
triggers the subsequent function. Functional integration implies static integration (common
concepts to describe data) and dynamic integration requires functional integration (common

functions to be called for performing a process).

Table 1 gives an overview of the various kinds of communication that may constitute the

integration of IT artefacts.

‘ static ‘ functional ‘ dynamic

common types/classes (e.g. Integer, | functions/services/ meth- process schema (e.g. order man-
concepts Real, Customer ...) ods, e.g. getCustomer (id: agement workflow), events (e.g.

String) ... “invoice created”)
direct inter-component messag- calling function Component responds directly to
ing passing data /service/method provided event created by other compo-

by other component nent.
indirect accessing and modifying calling shared function Central control unit receives

common data that modifies common events and triggers subsequent
data function according to common

process schema.

Table 1: Different kinds of Integration

While common concepts, such as data types, function declarations or event types are prereq-

uisites for integration, their existence does not guarantee a satisfactory quality of integration.

15

Information Systems

The quality — or level — of integration depends on the quality of the respective communica-
tion. In general, the quality of (machine) communication depends on the semantics of the
common concepts: The higher the level of semantics, i. e. the more possible interpretations
are excluded, the higher is the quality of communication (with respect to a certain purpose).
For instance: If two components exchange data as instances of the type “Real”, it may repre-
sent anything, thus creating interpretation/transformation effort and jeopardizing system
integrity. If they instead use a common concept of customer revenues the range of interpreta-
tions would be clearly smaller — as well as the threat to integrity. Figure 2 illustrates this con-

ception of static integration.

Common Semantic Reference System

| Real | | Customer |

* P
. meaning Abstraction
> through
\\ ’
accesses ’ accesses
System A > Data ¥ System B

(.
L]

level of semantics

Figure 2: Levels of Static Integration

Figure 3 serves to illustrate the same idea for dynamic integration by distinguishing event
types with respect to their semantics. Often, workflow management systems do not have
access to application-specific events such as “order.sum > limit”. Instead, they are restricted
to events occurring outside of application systems, e.g. those produced by the file system. As
a consequence of this low level of dynamic integration, the chances to adequately control the

execution of a process would be limited.

16

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

Common Semantic Reference System

| File "Orders.dat" modified | ‘ File system modified ‘ | order.sum > limit |

""""" E-Mail received | File "Confirmed.doc” created || Sideramount covered |

=

Event 2 |
Event 1 Check
Account i ,
-
L] ; E% " ;
] level of semantics Event 3 Check Event 4
0 Availability

Figure 3: Levels of dynamic integration

Communication requires common concepts that are specified in a common semantic refer-
ence system such as a class schema. To properly use these common concepts there is need for
a common namespace to refer to them in an unambiguous way. In addition to common con-
cepts, integration may also comprise a population of common instances that can be directly
referred to using a common namespace for instances. Figure 4 shows a common namespace
for jointly managing instances. The semantics of instances is defined by a reference to the

corresponding concept in the semantic reference system.

Common Semantic Reference System
[omg] [ene]
Real

Customer

meaning e / \
through e / \ System B

System A

#C42 |y

#C93 ra / name: “Smith”
name: "Johnson” #C37 / revenues: 14.820
revenues: 2.836 name: “Berger”

revenues: 66.890

Common Name Space

Figure 4: Illustration of instance-level integration

Instance-level integration is a prerequisite for avoiding redundancy, hence, a promoter of
integrity. Establishing common instance namespaces is a particular challenge in distributed

systems with limited bandwidths.
17

Information Systems

Reusability is the other side of the coin. There is no reuse of artefacts without integrating
them into existing environments. Also, reusing an artefact within a range of contexts requires
these contexts to share common requirements. Reuse is a major driver of productivity in tra-
ditional manufacturing. It allows accomplishing higher quality at a lower price. Reuse is
even more attractive for information systems: Once the artefact is implemented, the actual
production costs are almost zero resulting in tremendous economies of scale. For a more
elaborate study on the prerequisites of integration and reusability in information systems
design see (Frank 2008). The effect of semantics on integration and reuse is ambivalent. The

following propositions, illustrate this problem:

* A high level of integration promotes effectiveness (no need for reconstructing seman-
tics) and integrity.

* Integrating components on a low level (“loose coupling”) facilities exchanging com-
ponents with less effort and contributes to flexibility.

* Semantics promotes the benefit of reuse.

* Semantics compromises the range of reuse — and therefore prevents attractive econo-
mies of scale.

It is one of the key challenges of Information Systems research to overcome or relax the

above design conflicts. This requires developing abstractions that cover a wide range of po-

tential use cases and allow for convenient and safe adaptations.

Integration concerns also the relationship between an information system and the action sys-
tem it is supposed to support. In this case, we speak of organisational integration, often re-
ferred to as “IT-business alignment”. It is similar to the integration of data or components in
the respect that it is based on linguistic considerations. At the same time, it is different, be-
cause the language used to specify the concepts an information system is based on is clearly
different from the natural language that is used in the organisational universe of discourse.
Therefore, organisational integration cannot aim at common concepts in a strict sense. In-
stead, it aims at a correspondence of concepts in the information system with those in the
respective universe of discourse. The better the match between a concept in the universe of
discourse and the corresponding concept in the information system, the higher is the organi-
sational integration. Matching is not just a matter of structural or operational similarity, but
depends also on designators. If, for instance, the concept of a customer in an information
system is represented to a user through a respective designator of a language he does not

understand, there will be friction, i. e. integration will be dissatisfactory.

Organisational integration: The level of organisational integration is the higher, the
more the concepts of in information system and the designators used to represent them
resemble the terms in the organisational universe of discourse.

For instance: If an information system provides users with domain-independent concepts

such as “file”, “directory”, “table” etc., the user needs to link these concepts to the technical

terms he is familiar with, such as “Sales Report”, “Product Directory” etc. The bigger the
18

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

semantic gap between a concept represented in the information system and a concept used in
the corresponding action system, the higher is the chance for friction (misunderstanding,

reconstruction effort, inconsistencies).

Information System

Application System

Database Fs

1

J

(e fo

File Directory
" Employee
Rl

Qperating System | / Price List Delivery

Figure 5: Example of poor organisational integration

Invoice

Figure 5 shows an example of poor organisational integration. In addition to conceptual as-
pects, organisational integration concerns the synchronisation of an information system and
the corresponding action system. Whenever a relevant aspect of the domain has changed, the
information system should be updated accordingly. At the same time, changes that occur in

the information system should be accounted for in the domain.

The state of an information system should be synchronised with the corresponding
state of the represented domain.

Recent developments in the area of transponder systems enable an inspiring vision: Physical
objects that carry a rich description of themselves may in the end — provided current band-
with bottlenecks can be overcome — make it obsolete to distinguish between physical objects

and their representation in an information system.

In addition to the synchronization of instance-level states, one could also consider the evolu-
tion of an organisation and the schema of its information system. It relates to what is often
called flexibility or adaptability of an information system. If a domain gets rearranged in a
way that effects information system requirements, then the schema of an information system
needs to be adapted. In other words: The evolution of the relevant universe of discourse and
the schema of an information system should be synchronized. This kind of synchronization

is especially demanding because, change of this kind may require mutual adaptation.

19

Information Systems

3.24 Images of Information Systems

Information systems are complex artefacts that have a substantial impact on the way organi-
sations work and how they are perceived. Therefore, people need to develop an understand-
ing of information systems. Since information systems are invisible artefacts, they are diffi-
cult to grasp. Therefore, images or metaphors may play an important, however, ambivalent
role. On the one hand, they may contribute to all too simplified and therefore misleading
conceptions of information systems. On the other hand, they may help to create simplified
conceptions of information systems that foster an appropriate understanding from a certain
point of view. In his seminal book on “images of organizations”, Gareth Morgan (Morgan
1986) suggests to take advantage of the expressive power of images and metaphors. He pro-
poses to use multiple images of organisations to promote a multi-perspective conceptualisa-
tion of organisations and, hence, a deeper understanding. His proposition is based on the
premise “that our theories and explanations of organizational life are based on metaphors
that lead us to see and understand organizations in distinctive yet partial ways.” ((Morgan
1986), p. 12)

Information systems are different from organisations in various aspects: They are purpose-
fully constructed artefacts, they are mere linguistic constructions, the tasks they perform fol-
low certain algorithms, etc. However, at the same time they also resemble organisations in
important aspects: Organisations are complex, too. They are, to a large extent, based on so-
cial, hence, linguistic constructions. Organisational actions follow more or less rigidly pre-
scribed goals and rules. For people working in organisations it is important to develop an
appropriate understanding, not only of the organisation, but also of the information system.
Against this background, metaphors and images may be also beneficial for gaining an ap-
propriate understanding of information systems. In the following, we will look at four possi-
ble images, each of which focuses on a particular aspect of information systems. They serve
as examples for how to promote the appreciations of information systems from various

standpoints.

Regarding information systems as a strategic weapon focusses on an attractive perspective that
may be enabled by advanced information systems: An information system can be used to
gain competitive advantage, e.g. by reducing costs, providing additional services etc. This
image of information and information systems has been proposed by various authors (e.g.
(Porter and Millar 1985), (Mata, Fuerst et al. 1995)). While this image may be regarded as too
martial by some, it can be useful for those who are in charge of strategic planning — of the
firm in general and the information system in particular: It stresses that it can pay of to re-
gard the information system as a key enabler of sustainable differentiation. That includes the
conception of new business processes, the development of new products as well as entirely
new business models. However, using this image in a naive way is not appropriate: It is not

just technology that needs to be implemented. For an information system to promote long-

20

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

term differentiation, it has to be co-designed with a company’s action system, its products,

its relations to external partners etc.

Looking at information systems as a commodity emphasizes a substantially different view.
This image that has been advocated most notably by (Brynjolfsson 1993) and (Carr 2004) who
challenged the presumed positive effect of information technology on competitiveness. Carr
uses analogies to other technologies such as railways or electricity to propose that any new
technology provides opportunities only in an early phase of its existence to later become a
commodity that is accessible by everybody with similar costs. This view of information sys-
tems as a commodity has been criticized by many for good reasons. However, in recent years
it has gained growing popularity again through a slightly different image, which is not relat-
ed to the idea that information technology does not matter. Regarding information technolo-
gy as a service is similar to the commodity image in the sense that it suggests convenient
availability on demand without the need to bother with realisation and maintenance. Using
this image as a purposeful abstraction may help with getting a clearer view of how the in-
formation system should support the business. It may also help with defining separation of
concerns to promote professional management of information systems. On the other hand,
this metaphor has its downsides, too. Often, it is misused by suggesting that the realisation
of complex information systems is just a matter of picking the appropriate services (which
already exist) and “orchestrating” them to support the business. Usually, the remaining chal-

lenges such as data persistence are not mentioned in these images.

Information systems may promote the image of “organisations as machines” ((Morgan 1986),
p- 19): The software determines processes, does not allow for exceptions and does not ac-
count for personal relationships. In this sense it contributes to the conception of bureaucratic
organisation as it was proposed and analysed by Max Weber. As with bureaucracy, the cor-
responding effects of information systems are ambivalent: In those cases where the rules em-
bedded in the information system are appropriate, they foster productivity and consistency —
and reduce complexity for users. However, in cases where unforeseen requirements may

occur, the machine metaphor can contribute to inhibiting change.

Information systems may also result in “psychic prisons”: “Human beings have a knack of
being trapped in webs of their own creation.” (Morgan 1986), p. 199) The functions infor-
mation systems provide, the input they request and the results they deliver constitute to a
large degree what people perceive as organisational reality: It determines the way they per-
ceive the business and hinders them to think beyond existing work patterns. This effect may
be regarded as problematic, since it is an inhibitor of change or may even be used as a subtle
instrument of domination (as it was suggested by Habermas or Marcuse in their assessment
of technology on society in general). In any case, this image comes with the demand not to
take information systems and the patterns of their use for granted. Instead, a reflective user

should once in a while think about how information technology is influencing his action and

21

Conceptual Models and Modelling Languages

organisational collaboration — in order to imagine new ways of conceptualizing and using

information systems.

From a more optimistic perspective, information systems can also be regarded as promoters
of “self-organisation” or, as Morgan puts it, as “brains” — even though not everybody will
like this kind of mystification. If information systems are based on powerful abstractions that
do not only cover the world as it is, but also a wide range of possible future worlds, they will
not compromise change, but instead act as enablers of change. This is even more the case
with information systems that integrate representations of their surroundings and possible
goals they are supposed to aim at. For a corresponding conception of information systems
see (Frank and Strecker 2009).

4 Conceptual Models and Modelling Languages

An information system is a linguistic artefact which is based on the concepts that constitute
software systems, e.g. classes, modules, methods etc. It is aimed at representing relevant as-
pects of a certain domain. At first sight, it may appear that a system developer analyses the
respective part of reality to then represent it using appropriate technical terms from the field
of software engineering. However, a closer look shows that nobody will directly look at re-
ality (whatever that is). Instead, one will talk to those who are familiar with the domain or
will read descriptions of the domain. Hence, analysing a domain requires analysing existing
linguistic representations of the domain. The term “domain of discourse” — sometimes re-

ferred to as “universe of discourse” — serves to express this fact.

A domain of discourse is constituted by the language that is used in a certain domain.
It is characterized by specific concepts that reflect the topics relevant for performing
meaningful actions in that domain. Often, these concepts are not precisely defined. In-
stead, their interpretation — which is embedded in language games — may vary within
the domain.

4.1 Conceptual Model

The focus on linguistic constructions leads to the notion of a conceptual model. Conceptual
models have been at the core of information systems analysis and design for long. An often
cited definition of conceptual models stresses mainly the second aspect: “... descriptions of a
world enterprise/slice of reality which correspond directly and naturally to our own concep-
tualisations of the object of these descriptions.” ((Mylopoulos and Levesque 1984), p. 11)
While models that correspond directly to conceptualisations their prospective users are fa-
miliar with will certainly promote comprehensibility, restricting conceptual models to this
aspect is misleading: It will often not be the only aim of a conceptual model to provide a

“natural” representation that corresponds to existing conceptualisations in the targeted do-

22

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

main. This is for two reasons: (a) the unavoidable mismatch between natural language and

implementation languages and (b) the need to overcome limitations of current practice.

Ad (a): A conceptual model in Information Systems is usually aimed at bridging the gap be-
tween concepts used in a domain and the concepts used for implementing a system. There
are various differences between natural language and prevalent implementation languages.
In contrast to natural language, implementation languages require formalisation. Many nat-
ural language concepts resist against formalisation because understanding their meaning
relies on comprehension and empathy (e.g. (Wright 1974), p. 20). Furthermore, the semantics
of key abstraction concepts in prevalent implementation languages is different from corre-
sponding concepts in natural language. For instance: In natural language, an instance may be
an element of many classes. In (most) object-oriented programming languages, an object is
an instance of one and only one class. This difference between an extensional and an inten-
tional conception of class has serious but subtle implications on the semantics of specialisa-
tion (see e.g. ((Frank 2000b; Frank 2000a) . To cope with this problem, it will often — not al-
ways — make sense adapting the semantics of a modelling language concept to that of respec-
tive implementation languages in order to avoid a mismatch that jeopardizes a straightfor-

ward and consistent transformation.

Ad (b): As outlined already above, a conceptual model may be aimed at a representation of a
possible world which is intended to provide an orientation for change. In other words: The
idea of a possible world is thought to overcome existing shapes of a domain. At first sight, it
may appear that such an objective is not in conflict with Mylopoulos” and Levesque’s defini-
tion: One would describe the future world in terms of the language people in the respective
domain are familiar with. However, a closer look reveals that this would be an inappropriate
belief — which requires refining our preliminary definition of a model. While we speak of
modelling a domain, we actually do not directly focus on actions or physical objects within
the domain. Instead, we will usually regard a domain of discourse, hence viewing the do-
main through the lens of a given language, i. e. the language of the domain experts who de-
scribe the domain to us. This thought reflects a precondition of recognition that has been
known since Kant: “Also ist die Erkenntnis eines jeden, wenigstens des menschlichen Ver-
stands eine Erkenntnis durch Begriffe, nicht intuitiv, sondern diskursiv.” ((Kant 1976), B 92,
93).> Hence, a conceptual model is an abstraction of an existing linguistic abstraction. In other
words: It is the result of a twofold abstraction. Again, one might assume that this consideration
is of philosophical relevance only. But this is definitely not the case. First, it emphasizes the
pivotal relevance of language and communication, if we want to picture a domain. In their
seminal work on the “social construction of reality” Berger and Luckmann emphasize as

insistently as convincingly the crucial role of language for what they call the objectivation of

5 ,Hence, the recognition of any, at least of the human reason is recognition through concepts — not

intuitively, but discursively.”

23

Conceptual Models and Modelling Languages

the world, which is constituted by living with and through the language we share with oth-
ers (Berger and Luckmann 1966). The late Wittgenstein stresses this aspect, too, by introduc-
ing the term “language game”: "Here the term "language-game" is meant to bring into prom-
inence the fact that the speaking of a language is part of an activity, or of a life-form."
((Wittgenstein 2001), §23). With respect to our focus, the analysis and design of information
systems, these considerations emphasize the pivotal role of language — both as an enabler
and inhibitor of abstraction: “Language is my instrument — but simultaneously my problem,
too.” (translated from (Maturana 1987), p. 90 f.) — or as the early Wittgenstein put it: “The
limit of my language means the limit of my world.” ((Wittgenstein 1981), §5.6).

Against this background, I suggest a conception of “conceptual model” that is rather exten-

sive:
A conceptual model is a model that is characterized by the following features:

Linguistic construction: A conceptual model is created through the use of a modelling
language. This does not only exclude physical models, but also models that are depicted
in natural language or some unspecified graphical notation.

Abstraction from particular instances: As a default, a conceptual model does not represent
particular objects. Instead, it is built of concepts which are abstractions of objects of the
same kind. This is an important prerequisite for protecting a model against the threat
of ever changing instances — and for applying (reusing) it to other instance populations.
Note that there are exceptions to this rule.

Independence from technological change: Conceptual models are supposed to abstract from
confusing and ever changing peculiarities of technical infrastructures such as imple-
mentation languages, operating systems and hardware. Thereby they contribute to the
protection of investment — into the development of models and corresponding systems.

Correspondence to spoken language: While there are various ways to build concepts, con-
ceptual modelling is aimed at making use of concepts that are part of the language
spoken in the targeted domain.

Integrative abstraction: While there are good reasons to focus on the domain of discourse
only and to abstract from technical issues, using a conceptual model for designing
software will eventually require mapping them to implementation-level representa-
tions. Hence, a conceptual model is not only an abstraction of the targeted domain, but
at the same time an abstraction of the corresponding information system. To support
the mapping of a conceptual model to implementation-level representations, it is im-
portant to account for the semantics of the targeted representations in advance (see ad
(a) above).

Reconstruction of concepts: While conceptual models are built on analysing terms of a
corresponding domain of discourse, their concepts are not necessarily aimed at repre-
senting existing concepts. Instead, it may be required to clarify and even adapt the
meaning of concepts with respect to the purpose of the conceptual model. In other
words: Designing a conceptual model does not mean to merely represent relevant con-
cepts of a certain domain of discourse, but reconstructing them.

24

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

Emphasizing the reconstruction of concepts is for two reasons: First, the concepts used in
conceptual models will often serve to bridge the gap between a domain of discourse and an
information system. Therefore, they will in part reflect the limitations that are characteristic
for implementation languages (see previous aspect). Second, conceptual models may be used
as instruments for promoting change. Therefore, they may include concepts that deliberately

deviate from existing concepts to overcome their limitations.

The reconstruction of concepts from the corresponding domain of discourse serves two inter-
related purposes. On the one hand, it supports the development of adequate linguistic struc-
tures, such as the structure used to represent the concept “Customer”. On the other hand, it
adds semantics to a conceptual model that goes beyond the formal semantics defined with
the corresponding modelling language. This is accomplished by representing concepts with
designators that serve as references to terms of the corresponding universe of discourse. Fig-
ure 6 illustrates the importance of terminological references for the appropriate interpreta-
tion of a conceptual model. With respect to their syntax and formal semantics the three mod-
els are equivalent. However, it is very likely that an observer will have no idea what model
a) means, because it does not contain any reference to known terms. This is different with
models b) and c). Since they include references to terms we are familiar with, we have a
clearly better chance to interpret them. Model b) will be regarded as inappropriate by most
observers, because many invoices can be sent to a customer, while an invoice will usually be
assigned to exactly one customer. Therefore, model c) will be the only one that makes sense

to most of us.

Xy ab
- <qgp -
a) a: String 11 0 c: String
b: Float ’ " |d: Float
Invoice . Customer
- <« assigned to - -
b) name: String L id: String
1,1 0,
revenues: Float amount: Float

Customer . Invoice
) <« assigned to}- -
id: String

name: String 11 0>
revenues: Float | ’ " lamount: Float

Figure 6: Impact of references to domain of discourse for meaning of a conceptual model

The example illustrates that a conceptual model can hardly be reduced to its formal seman-
tics. Instead, its utility depends chiefly on associating it with conceptualisations the observer
is familiar with. This marks a clear difference to models in formal logics. There, a model is an

interpretation of a formal expression that makes this expression true (Wolters 1984). For in-

25

Conceptual Models and Modelling Languages

stance: The natural numbers can be regarded as a model of the Peano axioms. Despite this
difference, there is a similarity: The designators used in a conceptual model can be seen as
references to mental models of observers. A mental model can be regarded as a framework
of interpretation. Only, if one — out of many — mental model is associated that seems to fit,
the corresponding conceptual model will make sense to the observer (which does not mean,
however, that it has to be regarded as “true” or “appropriate”). Therefore, it is misleading to
regard a model as a “clear, precise and unambiguous conception” ((Falkenberg, Hesse et al.

1998), p. 55). Note that a reference can also be established by an iconographic symbol.

This thought relates to the so called semiotic triangle. Figure 7 shows an adaption of the semi-
otic triangle that corresponds to core terms of our previous considerations. Note that the fig-
ure covers selected aspects and relationships only. While it suggests that mental models are
just there, we can assume that they are influenced by interaction and communication, hence,
by domains of discourse and also by conceptual models. At the same time, conceptual mod-
els are not determined by corresponding domains of discourse, but may also contribute to
changing related natural languages. This consideration is of especial relevance for the con-
struction and use of information systems: It illustrates that the language we use (domain of
discourse) serves as a foundation of the information systems we design (through corre-
sponding conceptual models) and that the information systems we use may change the lan-

guage we speak.

Mental Models
(concepts)

refer to

Conceptual Model conceptualizes
(linguistic structures,
designators)

Domain
(objects, phenomena)

Domain of Discourse |_(constructs) _
(terms)

refer to

Figure 7: Semiotic rectangle, adapted from semiotic triangle

4.2 General Purpose and Domain-Specific Modelling Languages

Conceptual models require the use of a modelling language.

A modelling language is a language that serves to create a class of conceptual models
(from now on referred to as “models”). For this purpose it provides a set of concepts. A
conceptual modelling language is defined through its syntax and semantics. The ab-

26

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

stract syntax defines rules for constructing syntactically correct models using the lan-
guage concepts. The concrete syntax defines the symbols used to represent the abstract
syntax. Since these symbols are usually graphical, it is also referred to as graphical no-
tation. The semantics of a modelling language defines the (formal) interpretation of
modelling concepts. It can be based on a formal specification. Often, the semantics of a
modelling language is not completely formalized.

Note that there is no clear difference between the abstract syntax and the semantics of a
modelling language. The formal semantics of a concept is — among other things — defined
through its associations with other concepts. Possible associations can be specified through
the abstract syntax or through semantic constraints (for an example see (Frank 2010), figure
16). While a modelling language is pivotal for the development of conceptual models, it can
be more or less suited for a certain range of modelling tasks. Among other things, this im-
plies the question how much domain-specific semantics a modelling language should in-
clude. This leads us to the distinction of domain-specific modelling languages (DSML) and

general purpose modelling languages (GPML).

A GPML is a modelling language that is thought to be independent from a particular
domain of discourse. Instead, it should be suited to cover a wide range of domains. It
consists of generic modelling concepts that do not include any specific aspects of a par-
ticular domain of discourse.

V77 /7]

A GPML provides its users with basic concepts such as “entity type”, “class”, “attribute” etc.
which are used to reconstruct the relevant terms of the respective domain of discourse. At
the same time, there are mappings of the basic concepts to concepts required for the design
of information systems. Figure 8 illustrates how a conceptual model is created from basic

concepts and can be mapped to foundational concepts of a corresponding software system.

Customer "
firstName: String . Orderltem —0u1 Conceptual
\ lastName: String Product Model
ﬂ phone: String eIt
email: String P
revenues: Real Order @'0/-@8
,/ ‘17\\ Q
c Q@? L Programming
S & A U?"Ou Class MA Language
5 ~=29h v Customer {
g Ve Datatype String firstname;
2 s String lastname;
< . Ll G .
,We need to know last Attribute ggmg Z:g;f ’
Name, first Name Common elementary concepts Float revenules-
and Revenues of a (Modelling Language)) | !
Customer ..."
Domain of »~An Order
Discourse includes Order
Items. .." | |
----- corresponds : :
e Domain
----- Information System

27

Conceptual Models and Modelling Languages

Figure 8: Illustration of mapping from conceptual model to code through GPML

Even though created with a different motivation, the basic concepts that form the foundation
of GPML correspond to those found in the philosophical study of Ontology. Especially the
categories proposed by Grossmann and Bunge show a clear correspondence to the concepts

ou /i

used in GPML. Grossmann proposes categories such as “individuals”, “properties”, “rela-

v ou /i

tions”, “classes”, “quantifiers”(Grossmann 1983). Bunge, who speaks of the “furniture of the

//Ts

world”, suggests that the world can be described with basic concepts as “things”, “properties

of things”, “attributes of things”, “classes of things”, “laws and lawful states”, and “coupling
of things”(Bunge 1977).

Many system designers will regard a GPML as a self-evident instrument the use of which
they consider as beneficial. However, in everyday life we would regard it as an entirely un-
reasonable demand to restrict our communication to a language with a few primitive con-
cepts only. Instead, we expect a language to provide concepts that allow for differentiated
communication without forcing us to explain everything from scratch. In recent years, this
thought has led to the development of modelling languages that were designed for specific

domains:

A DSML is a modelling language that is intended to be used in a certain domain of
discourse. It enriches generic modelling concepts with concepts that were reconstruct-
ed from technical terms used in the respective domain of discourse. A DSML serves to
create conceptual models of the domain it is related to.

Using a DSML releases modellers of the need to reconstruct domain-level concepts from
primitive concepts. As a consequence, one can expect a higher productivity and a contribu-
tion to integrity, because the DSML excludes inconsistent models more effectively than a
GPML (for an illustrative example see (Frank 2011), figure 1). In recent years, the same
thought that has motivated the development of DSML has produced domain-specific pro-
gramming languages (DSPL). They provide programmers with domain-specific concepts,
which increase productivity and foster software integrity. In an ideal case, models specified
in a DSML are mapped to code of a corresponding DSPL (see example in Figure 9). It is also

conceivable that both, code and model are based on the same representation.

28

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

oo < Sales >
e % Conceptual
{—JDeparEmenl \ check a}iailabilily Model
Stoclf:lnfp </ @\S‘@/)
\ e S s Implementation
e o/ Language (DSL)
c Lo S/
S throy, Businegs Process
i3] gh <wsdl:operation
© A Service ey : name=,,check_availability">
9 Ve T
< Sales department is Organisational Unit <wsdl:portType name="StockInfo">
in charge of the order Common domain-specific
management process concepts (DSML)
. . »A stock information
Domain of Discourse garvice should offer
rrrrrrrrrrrrrrrrrrr corresponds | |
I |
I |
Domain Information System

Figure 9: Illustration of mapping DSML to DSPL

4.3 Abstraction Concepts

Modelling goes along with abstraction. Advanced abstraction does not only mean to leave
out aspects of the represented subject (“projection”). Instead, it is related to coping with vari-

ety and change.
4.3.1 General Considerations

The extension and the state of “things” that are covered by a model may change over time.
Furthermore, the requirements related to a system may change over time or within the in-
tended range of its (re-) use, which would result in the need to modify/adapt the system.
Hence, for a particular system the appropriate level of abstraction depends on the subject,
the design purpose and assumptions about future changes. In any case abstraction should
not be a reflection of ignorance: Leaving out aspects simply because we feel incompetent to
analyse them is a daring idea. Instead, abstraction should be based on a thorough and well-
grounded analysis of the domain and the system to design. For example: An architect who
designs a building has to decide what aspects he can/should abstract from in order to pro-
mote the building’s adaptability to future changes. He may consider aspects such as interior,
wiring, garden design, lighting conditions, windows, economy or security. To decide wheth-

er it is a good idea to abstract from a particular aspect, two criteria are of special relevance:
a) the dependency of the system to be built from the aspect and

b) the knowledge about possible realizations of the aspect.

29

Conceptual Models and Modelling Languages

Ad a): The more the design of the system depends on a certain aspect, the less are the chanc-
es to abstract from this aspect without jeopardizing the entire construction. The structure of a
house will usually be not independent from the windows. On the other hand, the design of a
building will usually not depend on the prospective interior. Ad b): It makes sense to ab-
stract from aspects the occurrences of which may vary in time. However, if one knows only
little about possible realizations, it may turn out that the design of the building is not inde-
pendent from some possible future realisations. Wiring, for instance, may have been done in
a certain way over decades. But then new requirements, e.g. related to digital networks, and
new technological options may suggest accounting for wiring when designing the structure

of a house.

The brief example shows that abstraction should be aimed at descriptions that cover the
range of potential states and potential modifications of the targeted system. That means that
all respective states and modifications correspond to permissible interpretations of the mod-
el. The concept of a class is a typical example for covering a range of possible system states:
A class is defined by a set of properties such as attributes, methods or associated classes.
Each attribute in turn is specified by a type or a class, which represent a clearly defined set of
possible occurrences. From a formal point of view, all combinations of these sets of occur-
rences would define the range of system states covered by a model. With respect to system
integrity, a respective abstraction should cover all conceivable system states, but exclude

impermissible (or insane) states.

More advanced abstraction is aimed at promoting the adaptability of a system. In addition to
the current system, it also covers possible future adaptations of the system. As a conse-
quence, adapting a system to new requirements means to concretize an abstraction, i. e. to
replace/extend the abstraction with a more concrete specification. A corresponding abstrac-
tion should cover all possible future modifications. At the same time, it should widely ex-
clude modifications that would result in impermissible (or insane) systems. For conceptual
models to represent abstraction, corresponding language concepts are required. A thorough
analysis of abstraction concepts goes beyond the scope of this report. We will restrict our
analysis to an overview of prevalent abstraction concepts and a more detailed consideration

of generalisation/specialisation and classification/instantiation.
4.3.2 Prevalent Abstraction Concepts

In addition to abstraction concepts provided by modelling languages, there are other forms
of representing abstractions, e.g. through patterns or aspects. However, we will not consider
these here. On the one hand, they represent a variety of different, sometimes not clearly spec-
ified abstractions. On the other hand, they are not provided by object-oriented modelling
languages and respective programming languages, which are a relevant reference for our
study, since it accounts for the transformation of models to code. While many object-oriented
modelling languages do not include delegation, it is accounted for nevertheless because it is

an important alternative to generalisation. In any case, abstraction is aimed at coping with
30

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

complexity that is caused by sometimes subtle diversity. Abstraction concepts allow for pur-
posefully abstracting from diversity — of system states and possible future versions of a sys-
tem. Thus, they may allow for a more comprehensible representation of a system. At the
same time, they support procedures to change the state of a system or to create a new version

without jeopardizing its integrity. Table 2 gives an overview of abstraction concepts. Note

that the definitions given for classification and generalisation are preliminary only.

‘ Concept

Classification

‘ Description

Serves to classify a set of congenerous objects, i. e. assign them
to a common class. All properties defined for the class, apply to
each of the included objects. For example: Objects represent-
ing customers can be classified into a class “Customer” that
specifies all properties they share.

The opposite direction of classification is called instantiation
and means to create an object according to the specification of
a certain class. Example: An object to represent a new custom-
er is created from an existing class “Customer”.

Abstraction from

the concrete extension
of a class, i. e. its actual
set of objects and the
states of the objects of a
class

Encapsulation

Also referred to as “information hiding”. It means that the
internal structure and state of an object are invisible from the
outside, i. e. the state is not directly accessible. Instead access
to an object’s state is restricted to the access paths (methods)
the object provides with its interface.

the internal structure
and state of an object

Generalisation

results in a superclass that represents the common properties
of a set of subclasses. A superclass represents the set of prop-
erties, a set of subclasses have in common. Every proposition
that is true for the superclass is true for its subclasses, too.
Example: “Master Thesis”, “Sales Report” etc. are generalized
to “Document”. The opposite process, i. e. creating a subclass,
is referred to as specialisation. It describes a relationship be-
tween two classes. A class that is specialised from a superclass
extends the set of properties of the superclass by further prop-
erties. Example: The superclass “Document” is specialized into
“Master Thesis” by adding the properties “title” and “author”.
Specialisation implies the substitutability constraint: Any in-
stance of a class can be substituted for an instance of one of its
subclasses.

from the peculiarities of
existing and possible
future subclasses

Delegation

represents a directed association between a role object and a
role filler object. For certain assignments, the role filler object
delegates its responsibility to a role object. The role object
refers (transparently) to its role filler’s properties and state.

from the specific respon-
sibilities of existing and
possible future roles

Polymorphism

allows for resolving the semantics of a message at run-time
only. In other words: A message with a particular name may
relate to multiple methods (implementations).

from the class of the
object a message is sent
to

Table 2: Overview of Abstraction Concepts

31

Conceptual Models and Modelling Languages

To analyse the benefit of abstraction concepts it is useful to distinguish between their effect
on managing a particular system within a certain time frame where it is stable and on sup-
porting the evolution of a system. In the first case, the focus is on managing the changing
instance populations of the system and providing users with a comprehensible system repre-
sentation. In the second case, the focus is on supporting convenient and safe (consistent)

modifications.

‘ Concept ‘ Particular System ‘ System Evolution

Classification

Comprehensibility: Classes that corre-
spond to concepts in the respective
domain of discourse, foster ease of use
and organisational integration respec-
tively (by reducing friction between
information system and action system).

Integrity: The states of objects can be
changed within the boundaries defined
with the corresponding class. New ob-
jects of a class can be created with no
need to specify their semantics again.
The more restrictive the implicit and
explicit integrity constraints specified
with a class, the higher the contribution
to system integrity.

Extending classes by adding new properties
(attributes, methods) is monotonic and does
not corrupt previous responsibilities of a class.

Encapsulation

Comprehensibility: To understand the
responsibilities of a class, it can be suffi-
cient to look at is interface only. In this

case, encapsulation reduces complexity.

The internal structure of an object can be
changed without causing side-effects, as long
as the object interface does not change.

Generalisation

Comprehensibility: If the classes of a
generalisation hierarchy correspond to
concept generalisation known in the
respective domain of discourse, the
system may become more comprehen-
sible. However, there are two obstacles
to account for. On the one hand, exten-
sive generalisation hierarchies may be
confusing. On the other hand, the se-
mantics of generalisation in program-
ming languages is usually different from
that in natural language — which may
cause confusion.

Adding subclasses enables reusing the proper-
ties of the superclass and allows for system
adaptations that are not a threat to integrity —
adding a further subclass represents a mono-
tonic extension.

Delegation

Comprehensibility: The concept of a
“role” is widely used. Therefore, it
should foster the comprehensibility of a
system’s representation.

Integrity: Since many role objects may

Adding new roles to a role filler allows for reus-
ing the role filler’s properties. Also, adding new
roles is monotonic and does not threaten exist-
ing responsibilities.

32

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

refer to one corresponding role filler
object — including its state (!), delegation
contributes to reducing redundancy and,
hence, to promoting integrity.

Polymorphism Comprehensibility: Using the same des- Adding more specific subclasses that overwrite
ignator (as a well-known abstraction) for | methods of the superclass does not require
a set of similar methods is suited to changing the classes of those objects that are
foster comprehensibility. supposed to use these new methods.

Table 3: Benefits of Abstraction Concepts

Note that the particular meaning of generalisation — as well as the need for delegation — de-

pends on the concept of a class, which may vary.

Differentiating between a given system and its evolution corresponds to common views: In
the first case, the focus is on managing instances, in the second case, the focus is on manag-
ing schema modifications. But the boundaries between these two views may be blurred.
Usually, they are related to peculiarities of prevalent implementation languages: Most lan-
guages are restricted to two levels of abstraction (type and instance). While changes to in-
stances can be applied during run-time, schema modifications often require re-compilation.
However, there are cases where schema modifications are required during the run-time of a
system. For example: A text editor may require adding new document types during run-
time. An online-retail platform may require adding new product types during run-time. Fur-
thermore it is noticeable that the selected abstraction concepts represent static and in part

functional abstractions only.
4.3.3 Appropriate Abstraction: Some Postulates

The benefits of abstraction concepts as they are outlined in Table 2 relate to consistently cop-
ing with diversity and change. However, not any kind of abstraction is of the same quality.
The following postulates serve to outline essential aspects of model quality. The more they
are accounted for, the higher is — ceteris paribus — the quality of a model. Postulate 1 and 2
relate to models of a particular system, while postulate 3 and 4 relate to models that are sup-

posed to cover the evolution of systems.

Postulate 1: Conceptual fit. This postulate addresses the appropriateness of abstractions. On
the one hand, it implies that a model includes all concepts that are relevant and each concept
includes all relevant properties, where relevant means “required for serving the purpose of a
system”. On the other hand, conceptual fit refers to parsimony: No more concepts — and for

each concept no more properties — than those that are relevant should be part of a model.

Postulate 2: Integrity. This postulate is related to the previous one. In particular it refers to the

semantics specified for the concepts of a model. The semantics of a concept is defined by the

set of possible occurrences (instances) and the set of possible operations on these occurrenc-

es. To promote integrity, a concept should allow for representing all relevant occurrences
33

Conceptual Models and Modelling Languages

and operations. For example: The analysis of a sales department reveals that every sales rep-
resentative is assigned exactly one sales district. Specifying this restriction in a correspond-
ing model implies that a respective system would not allow for assigning more than one dis-
trict to a sales representative. However, it may turn out that there are cases where it makes
sense that a sales representative is assigned more than one district. As a consequence, this
may either restrict the use of the system for this purpose or compromise its integrity, since
users may look for a “workaround”. At the same time, integrity demands for inhibiting the
representation of impossible/nonsensical instances. If, for instance, a property that represents
the revenues of a customer is specified as String, it will be possible to assign values that do
not represent numbers. At the same time, the semantics of a String would not allow for rele-
vant operations (see above). Usually, this demand is addressed by using predefined data
types. As a consequence, it will usually be fulfilled to a small degree only, since data types
often allow for instances that are nonsensical. For example: Specifying revenues as Real
would not only allow for negative values but also for numbers that are bigger than any rea-
sonable value. The integrity of a system is especially an issue when its state is changed. A
functional abstraction, e.g. a method provided by a class, should cover all relevant transi-
tions — and prevent those transitions that compromise system integrity. If a relevant transi-
tion is missing, users may again apply some sort of workaround and thereby jeopardize sys-
tem integrity. A potentially inconsistent transition would for instance be a function that al-
lows for computing negative amounts in stock. The legitimacy of a transition may depend on
previous transitions, i. e. it may be path-dependent. In this case, a dynamic abstraction such
as a state chart or a process model is required. A dynamic abstraction should cover all rele-
vant paths of execution — and exclude those paths that would result in inconsistent system

states.

While it is demanding enough to satisfy the above postulates for one particular system, it
will usually be not sufficient, because system requirements tend to change. Abstraction be-
comes much more challenging when we look at the evolution of a system — or its differentia-
tion in a set of variants. It means that postulates 1 and 2 should be satisfied not only for a
particular system, but for an entire range of system variants or versions that evolve over
time. In general, coping with change or variety recommends distinguishing between those
parts of a system that are invariant and those parts that may vary. At first, this demand con-
stitutes an epistemological challenge, since it requires making reasonably reliable assump-
tions about possible variations and future changes. Of course, these assumptions can be shat-
tered: Action systems are contingent and subject of unforeseen change, i. e. people are crea-
tive in inventing new technologies and in establishing new patterns of action. Apart from
this epistemological challenge, a further challenge remains: Even, if we are confident to some
extent that we can distinguish between system parts that are invariant within a certain time
frame and those that are not, there is still need to adequately represent this knowledge in a
model. As a general rule, the invariant parts of a system should never be deleted. The variant

parts may be deleted or replaced. Hence, the invariant core of a system is subject of reuse

34

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

through the range of its variants and the evolution of future versions. An ideal abstraction is
focussed on invariant parts of a system. At the same time, it abstracts from the range of vari-
ations that can be accomplished by extending the invariant part in a monotonic way, i. e.
without jeopardizing the correctness of the invariant part. For example: A class “Document”
may be an invariant part of a document management system. Further document types may
be subject of future changes. They can be specialized from “Document” without having an
effect on the invariant core. For an abstraction to foster convenient and consistent system

modifications, it should satisfy the following postulates:

Postulate 3: Monotonic extension. Adding new features to a concept that is represented by the
abstraction should be monotonic. Specialisation that satisfies the substitutability constraint is

a prototypical example for a monotonic extension.

Postulate 4: Variability. An abstraction should allow for concretions that cover the entire
range of relevant variants or versions. The following example illustrates how postulate 4
may be satisfied or violated. If all product types within an inventory management system
and its variants/versions are characterized by corresponding instances that have a certain
size, weight and identification number, all future product types may be added as specialisa-
tions. However, if product types such as certain liquids are added that do not have these

features, they could not be introduced through specialisation.

Postulate 5: Evolutionary integrity. An abstraction should not allow for concretions that result
in nonsensical systems, i. e. systems that one does not want to see at all. Specialisation, for
instance, allows for an unlimited number of possible extensions, most of which will usually
not make sense. In an ideal case, satisfying this postulate would enable systems that allow

advanced users to apply modifications without threatening system integrity.

To satisfy postulate 4 and 5 one would need to know all possible variants and future ver-
sions of a system and be able to determine which variants and future versions have to be
avoided. Apart from this — already mentioned — epistemological challenge developing ab-
stractions that satisfy the above postulates is possible to a limited extent only. Monotonic
extensions are restricted to static and functional abstractions only. Dynamic abstractions that
aim at representing processes within a system do not allow for monotonic extensions (see
(Frank 2012). Therefore, separating invariant from variant parts of a dynamic abstraction is

an essential challenge of system evolution.

4.4 Diagram and Diagram Type

Often, the terms “conceptual model” and “diagram” are not clearly distinguished. Some-
times, this is not a problem. However, with respect to designing modelling languages and
building corresponding tools, there is need for a more elaborate terminology.

A diagram is a visual representation of data — both on the instance level and on con-
ceptual levels. A diagram can be regarded as a view on a model or on a set of interre-

35

Conceptual Models and Modelling Languages

lated models. It can comprise an entire model (or set of models) or only a part of it. Dif-
ferent from conceptual models, diagrams will often represent selected features of in-
stance populations. Hence, every (graphical) model is represented by a diagram, but
not every diagram represents a conceptual model.
An example of a diagram is the graphical representation of a data model. An enterprise
model that has been created using multiple modelling languages could be represented in one

multi-language diagram.

A diagram type represents a class of congenerous diagrams.

The notion of a diagram type is important for describing modelling methods, since it allows

for describing views on models that are appropriate for certain tasks or scenarios.

4.5 Ontology

In Philosophy, the term “Ontology” is established for the study of the “being”. It is aimed at
identifying what is “real”, analysing the relevance of experiences for this purpose and at
finding basic categories of being that allow to describe all forms of being (for an overview see
(Schwemmer 1984). Apart from the philosophical tradition, the term “ontology” is also wide-
ly used in Computer Science and Information Systems. This is an unfortunate situation, be-
cause it contributes to terminological confusion. This is even more the case as both uses of
the term have commonalities. In addition to that the use of the term in Computer Science and
Information System is not consistent either. Often, it is used without an explicit definition. If
a definition is given, it usually refers to Gruber who introduced the term in the field of Arti-
ficial Intelligence as "an explicit specification of a conceptualization." ((Gruber 1992), p. 1)
Even though Gruber explicitly refers to the philosophical term “Ontology”, he does not
bother much with a closer look. Instead he neglects the relevant relationship between Ontol-
ogy and Epistemology and states that — in the realm of knowledge-based systems — "what
'exists' (in the sense of philosophical Ontology, U.F.) is exactly that which can be represent-
ed.” ((Gruber 1992), p. 1) Subsequently, the term “ontology” gained remarkable popularity,
although the definition is hardly convincing: Every data model constructed with the Entity
Relationship Model would qualify as an ontology. Unfortunately, the term is often not used
with a conception that would allow a clear distinction from “conceptual model”. Some au-
thors compare them to models on the object level, while others relate them to meta models
((Henderson-Sellers 2011), p. 100 f.) — resulting in a remarkable terminological confusion.
However, while the intention that is related to ontologies shows clear similarities to concep-
tual models, there are a few characteristic differences in the actual construction of ontologies
and conceptual models. The most important difference relates to the specification language.
In the case of ontologies, specification languages (e.g. OWL or RDF) allow for deduction,
while this is usually not the case for languages used to specify conceptual models. Related to
that, ontology specification languages are usually not specified with meta models, but with

grammars. Also, different from the default for conceptual models, an ontology may cover

36

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

various levels of abstraction, e.g. combine the object level with a meta level. In addition to
that, conceptual models are usually expressed through graphical diagrams, while ontologies

are usually represented as text.

An ontology is a conceptual model specified in a formal language that allows for de-
duction and usually lacks a graphical representation. It may cover various levels of ab-
straction.
Apart from the unfortunate use of the term, the deduction capabilities offered by ontologies
can be a substantial benefit. They allow for inferring characteristics of objects from other ob-
jects by applying general inference procedures such as backward chaining. Unfortunately,
corresponding languages are based on a paradigm different from prevalent object-oriented
languages, which makes enhancing object-oriented languages with deduction capabilities a

serious challenge.

4.6 Reference Models

DSML support the development of conceptual models by providing domain-specific con-

cepts for reuse. A similar objective is addressed by reference models.

A reference model is a conceptual model which is intended to represent a domain that
comprises a class of possible applications, e.g. all companies of a certain industry. Ref-
erence models come both with a descriptive and a prescriptive claim. On the one hand,
they should account for actual patterns of action and corresponding concepts. On the
other hand, they are supposed to serve as a blueprint for especially effective infor-
mation systems.

The latter aspect is stressed by the claim that they should be accepted as a reference by a
wider range of users. While this claim is directly related to the essential objective of reference
models — to achieve advantages through economies of scale - it is at the same time problem-
atic. This is for various reasons: First, it is a criterion that is not related to features of a model
itself, but depends on its dissemination. Second, it is unclear what level of acceptance — both
in range and commitment — is required to speak of a reference model. Third, if taken serious-
ly, the reference claim would widely compromise the use of the term “reference model” in IS
research, because so far there are only very few models that — arguably — can be regarded as
an accepted reference. Despite these obstacles, I do not object to the use of the term. It is an
established term in IS research and — more important — it represents an attractive long term
vision for research which to pursue makes sense even if the intended dissemination cannot
be achieved. In addition to foster productivity through reuse, reference models promote
(cross-organisational) integration of those information systems that are based on them. In
this case, the concepts defined in a reference model serve as a common semantic reference sys-

tem for all systems to be integrated.

While reuse alone would allow for adapting a reference model to individual needs, adapta-

tions are a threat to maintenance and integration. Hence, the more diverse the domain — and

37

Conceptual Models and Modelling Languages

the concepts in the corresponding domain of discourse are, the more challenging is the crea-
tion of reference models. If the diversity of key concepts such as “customer”, “product” etc.
is too high, reference models reach their limits. A type in a reference model can be modified
only by deleting or adding — arbitrary — properties. Allowing for a wider range of adapta-
tions requires a higher level of abstraction. This is the case for DSML: Different from a refer-
ence model on the object level, the concepts a DSML is comprised of are defined in a meta
model, hence, they are usually abstractions of types. In other words: A DSML may be in-
tended to serve as a reference model — on a higher level of abstraction. The following exam-
ple illustrates why DSML are suited to cover a wider range of concept diversity than refer-
ence models on the object level. An e-commerce platform is supposed to offer a wide range

of entirely different products such as furniture, consumer electronics, vehicles etc.

ProductAspect

-name : string
-description : string
/\ /\

DSML (Meta Model)

includes4

Feature 0..8 includes Product

/\ /N

1.* 1.%

4 WoJy pazienads

3 replaces

n
|
|

’ |

|

}

StandardFeature }
I b |
0.* !

|

|

|

. |

|

Lawnmower

Reference Model

-name : String
-description : String
-wheels : Integer

-engineType : String I
-picture: Image | Table | | Sofa |

+getName() : String

+setName() TV-Set
+getDescription() : String

+....()

Figure 10: Combining advantages of reference models and DSML

Representing all these products in a reference model would result in numerous product
types. Nevertheless, it would not guarantee to cover all product types that may appear in the
future. Also, it would not guarantee to adapt the model to new product types by specializing
them from existing ones, since extending the set of features may not be sufficient (for a de-
tailed analysis of this problem see (Frank 2001)). One possible solution would be to choose a
flat concept of product that would, e.g., be reduced to name, price, description etc. This
would, however, compromise the corresponding systems’ functionality, e.g. with respect to
supporting elaborate search procedures, and their integrity. Using a DSML that includes a
generic concept of product would support the consistent and elaborate representation of par-
ticular product types. Compared to a reference model, a DSML provides increased flexibility,
38

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

but still requires specifications. To take advantage of the convenience offered by reference
models and the flexibility of DSML, both approaches can be combined. Figure 10 shows an
example. Note that it does not include a specific graphical notation of the DSML.

In the long run, DSML enable an attractive vision: All relevant technical languages could be
reconstructed through DSML. If they were standardized, they would then serve as a global
“lingua franca” for representing information systems and corresponding IT artefacts. To fos-
ter the integration of DSML, they should be specified with a common meta language and
share common concepts. The prospects of this vision are remarkable. While it may be re-
garded as frightening by some, it would also dramatically improve the efficiency of cross-

organisational collaboration and boost economies of scale through reuse.

4.7 Meta Classes and Meta Models

The specification of a class implies a linguistic structure that comprises the concept of class.
A concept of class, i. e. the specification of all possible classes of a certain kind, can be defined

with meta classes.

A meta class is a class of congenerous classes. Since a meta class is a class, there may be
an indefinite hierarchy of meta classes.

So far, we used the term “class” and “type” in most contexts without further differentia-
tion. With respect to the specification of modelling languages, a differentiation between
meta classes and meta types makes sense — even though the definition of a meta type cor-
responds directly to that of a meta class:

A meta type is a type of congenerous types. Since a meta type is a type, there may be

an indefinite hierarchy of meta types.
The abstract syntax and semantics of a modelling language can be specified by a grammar or
a meta model. Meta models are especially appealing for this purpose for two reasons. First,
they are based on the same paradigm as the models themselves. Hence, prospective lan-
guage designers should be more familiar with them than with grammars. Second, they pro-
vide a better foundation for designing corresponding modelling tools than grammars, be-
cause they can be transformed to object models in a straightforward way. Meta models are
widely used in Software Engineering and Information Systems. Nevertheless, there are still

debates about the conception of meta models.

A meta model is a conceptual model of a class of conceptual models. Hence, a meta
model determines how to specify permissible models of a certain class. In other words:
It defines the abstract syntax and semantics of a modelling language. As a default, the
key concepts of meta models are meta types. There are, however, exceptions to this
rule.

A meta model could be built of meta classes, too. However, if a meta model serves the speci-
fication of a language independent of a machine, the definition of class methods does not
make much sense. Since a meta model is a conceptual model itself, an indefinite hierarchy of

39

Conceptual Models and Modelling Languages

meta models is conceivable. Since a meta model is supposed to specify the concepts of a class
of models, the concepts a meta model consists of, should be more elementary. If the concepts
of a meta model are regarded to be clear enough, e.g. if there is a formal foundation they are
based on, there is no need for introducing a further meta layer. Often, but not necessarily,
this sequence is limited to meta meta models. It has become popular to use numbers for
identifying model layers, where zero corresponds to the instance layer, one to the type layer,
two to the meta type layer etc. Even though such a structure can be very helpful to distin-

guish different layers of abstraction, it has its limitations.

4.8 Method and Modelling Method

While a modelling language is mandatory for developing a conceptual model, it is not suffi-
cient. Instead, the complexity of the tasks will usually demand for a professional approach

or, in other words, for an appropriate method.

A method is aimed at solving a class of problems. It consists of a terminology, proven
assumptions about successful action and a corresponding process model that guides
the course of problem solving steps.

Typical examples of methods are diagnostic procedures used by physicians: They are based
on the technical language used in medical science, which provides a linguistic structure of
the problem, medical knowledge (assumptions about symptoms and related diseases) and

process models that guide the course of a diagnosis.

A modelling method is a specific kind of method. It is aimed at solving a class of prob-
lems through the design and use of models. It consists of at least one modelling lan-
guage and at least one corresponding process model which guides the construction
and analysis of models. In addition to that it includes assumptions about successful
patterns of action.

Note that often the term “modelling methodology” is used instead. This is, however, mis-

leading: A methodology is a study of methods.

A domain-specific modelling method makes use of at least one DSML and at least one
domain-specific process model.

We call a modelling method that is aimed at supporting the design of meta models or the

design of modelling languages a meta modelling method:

A meta modelling method is a modelling method that consists of a meta modelling
language and a corresponding process model which guides the specification of meta
models, which in turn may serve the specification of a modelling language.
A meta modelling method is different from a regular modelling method in two respects. On
the one hand, it requires the use of a meta modelling language that serves specifying the in-
tended modelling language. On the other hand, it demands for specific attention towards the

analysis of corresponding requirements: Often, prospective users do not know what to ex-

40

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

pect from an artefact they have not come in touch with before. (Frank 2010) presents an ap-
proach that accounts for this challenge. Furthermore, there are modelling methods that are
aimed at the construction of modelling methods. Corresponding activities are often referred
to as “method engineering”. Often, their main focus is on the design of process models,
which is supported by specific abstractions for designing process models. These abstractions
may include a language for specifying process models as well as reference process models.
(for a recent overview of approaches to method engineering see (Henderson-Sellers 2010)). In
addition to that method engineering is usually aimed at realising modelling tools to facilitate

the efficient use of a corresponding modelling method.

Method engineering is the discipline of systematically designing modelling methods.

In its most basic form it comprises a modelling language and a corresponding process model
for designing process models for the use of certain existing modelling languages. More ad-
vanced forms of method engineering include the modification/extension of existing language
specifications or even the creation of new languages. They require a respective meta model-
ling method. To foster the efficient realisation of modelling tools, meta modelling tools are of
great value, since they enable the automatic creation of rudimentary modelling tools out of a

language specification.

5 Enterprise Modelling

Conceptual modelling is aimed at the development of application systems in general. In any
case, enterprise modelling has a more specific and at the same time a wider scope. It is based
on the assumption that enterprises are domains with specific peculiarities and remarkable
complexity. Therefore, they require a dedicated modelling approach. In addition to support-
ing the development of enterprise software systems, enterprise modelling is also aimed at
supporting analysis, design and management of the enterprise itself. Therefore, the defini-
tion of the term “enterprise model” recommends to first consider essential characteristics of

enterprises.

5.1 Conceptions of the Enterprise

There is a remarkable range of approaches to define the term “enterprise”. Some suggest
conceptualizing enterprises as social systems, or as social-technical systems. Many other fo-
cus on core objectives, such as generating profits or maximizing profits. The "inducement-
contribution-theory" is aimed at explaining why individuals would join an enterprise and
why enterprises can be stable systems over a longer period ((Barnard 1938), (Simon 1949)).
Further approaches emphasize a specific economic perspective. In his theory of the firm, Gu-
tenberg proposes mathematical models of idealized production processes to analyse the use
and combination of scarce resources (Gutenberg 1929). The transaction cost approach
(Williamson 1985) targets the question, if and when institutions such as enterprises are supe-

41

Enterprise Modelling

rior to markets where individual actors would offer their services. In addition to general
conceptions of the firm and attempts to explain their constitution, there are numerous more
specific conceptions of particular functions, focussing e.g. on manufacturing, finance, mar-
keting etc. For Information Systems all of the above mentioned conceptions of the enterprise
— as well as numerous others — can be relevant, if they contribute to specific aspects of de-
signing and using information systems. However, a generic Information Systems perspective
of the enterprise recommends accounting for information systems. Therefore, it makes sense
to differentiate an enterprise into two constituent parts: the action system and the correspond-

ing information system (see 3.2).

The term “action” denotes a core characteristic of human life — a characteristic that serves to
distinguish our doing from that of animals. It is closely related to the cultural context and to
language. Therefore, the term can hardly be defined in a comprehensive way. Instead, its
interpretation relies in part on referring to our own experience as conscious actors. Due to
the foundational function of actions for understanding human life and human interactions, it
is not surprising that it is the core term of various so called action theories in Philosophy and
Sociology ((Habermas 1984), (Parsons 1978), (Argyris 1985)). While a comprehensive consid-
eration of respective approaches is not required for our work, they still have an impact on

certain aspects of our conception.

An action is characterized by an actor who performs it, an object it is related to and an
intention that drives the actor.

An action system is a system of interrelated actions that reflect the corresponding ac-
tors’ intentions and abilities, organizational goals and guidelines, contextual threats
and opportunities, as well as mutual expectations. An action system may consist of one
actor only.

Beyond this ostensible description, the concept of an action system is accompanied by a
number of subtle characteristics that have important implications on the appropriate devel-
opment and use of information systems. Similar to information systems, language is a key
element of action systems: An action system is based on communication and cooperation
which in turn imply the existence of a common language. At the same time, actions enrich
utterances with meaning and reproduce certain patterns of reducing complexity. In other
words: They constitute and reproduce sense. "Action, perception, and sense-making exist in a
circular, tightly coupled relationship ..." (Weick 1979), p. 159). As a consequence, action sys-
tems will usually bulk against a formal specification. The concepts they are based on are of-
ten characterized by intentional semantics: The intentions that they reflect make sense only
through references to the corresponding actors” “Lebenswelt” (literally: “life world”) (Schiitz
1981). Hence, describing action systems with formal languages only goes along with the risk
of dysfunctional simplifications. From an epistemological point of view this suggests to not
only focus on observable behavioural aspects, but to also consider a hermeneutic approach
that aims at “empathy .. or re-creation in the mind of the scholar of the mental atmosphere,

the thoughts and feelings and motivations, of the objects of his study.” (Wright 1971), p. 6)
42

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

Against this background, I propose a conceptualisation of action systems that is based on the

following characteristics:

Intentional semantics and pragmatics: Action systems are not “there for the picking” as Ber-
trand Meyer suggests with respect to the discovery of objects. While this is arguably the case
for most domains, it has a particular relevance for action systems. Action systems become
accessible only through the language that describes and constitutes them. As a consequence,
the analysis of action systems has to focus on corresponding descriptions and conversations.
The term “domain of discourse”, sometimes also called “universe of discourse” emphasizes

this aspect.

Contingent subject: The involved actors will usually have different agendas, some of which
are hidden. Furthermore, their actions are affected by assumptions about (mutual) expecta-
tions. While the idealized conception of enterprises assumes clear goals, objectivity and ra-
tional action, action systems are often “saturated with subjectivity, abstraction, guesses, ...
and arbitrariness” ((Weick 1979), p. 5). In other words: Action systems are characterized by

multiple contingencies, which may be reciprocally intensified ((Luhmann 1984), p. 148 ff.).

Resistance to change: Often, the analysis of action systems is aimed at change, e.g. to improve
efficiency, to decrease costs etc. However, action systems — and their linguistic foundations —
constitute and reproduce sense, which is essential for understanding a complex environment
and for reducing uncertainty and risk. As a consequence, action system will often show a
remarkable persistence; many actors will be extremely reluctant to accept or even support
change ((Morgan 1986), p. 233 ff., (O'Toole 1995)).

Penetrated by computer-supported information systems: To an ever growing extent enterprises
are shaped by the use of information systems. In those companies where many stakeholders
primarily interact with the information instead of people, there is even good cause for the

pointed phrase “The information system is the enterprise”.

Relevance of informal context: The success of action systems depends on individual intentions,
motivations and commitment. Therefore, it is often not sufficient to account for “substantial”
actions that are directly related to fulfilling certain tasks. Instead, “symbolic” actions may be
required that are aimed at fostering motivation and commitment ((Pfeffer 1981), p. 5). Since,
they are directly related to characteristics of a human actor such as charisma, persuasive

power, empathy etc., they can hardly be reproduced by an information system.

5.2 Enterprise Models

Exploiting the potential of information systems will often require reorganizing existing pat-
terns of action — sometimes in a radical way. Therefore, analysis and design of information
systems should usually be done conjointly with analysing and designing the organisational
action system. This consideration leads to the first, most generic conceptualisation of the

term:

43

Enterprise Modelling

An enterprise model integrates at least one conceptual model of an organisational ac-
tion system with at least one conceptual model of a corresponding information system.

Note that action system and information system are not limited by the boundaries of a par-
ticular organisation. Instead, an enterprise model may represent inter-organisational action
systems, too. It is essential that the models that constitute an enterprise model are integrated
through the use of common concepts. This does not only foster the integrity of an enterprise
model, it also provides a medium for users with different professional backgrounds to com-
municate more effectively: While everybody should have a good chance to find an abstrac-
tion that corresponds to his personal perception (and conception), he is also supported in

realizing how the models he prefers are related to those of other stakeholders.

The complexity of both action system and information system demands for separation of
concerns and professionalization. Professionalization goes along with specialized terminolo-
gies. Separation of concerns creates the need for coordination and, hence, for communication
across different professional perspectives. The psychological concept of perspective relates to
the concept of perspectivity (“Perspektivitat” in German) which has a long tradition in Philos-
ophy, Psychology and Sociology. It serves to express that the way an individual perceives
and understands the world, i. e. his “Weltanschauung”, is characterized by a specific per-
spective, i. e. a cognitive disposition that is shaped by socialisation, experiences, language
games, etc. Hence, a perspective as a psychological construct constitutes a conception of reality,
comparable to a particular viewpoint in spatial perception ((Graumann 1993), p. 159), which
helps to reduce complexity by constituting sense ((Luhmann 1977), p. 182). According to
Wollnik it is reflected in a certain use of language, in certain interests and intentions, hence
in a particular pragmatic relevance(Wollnik 1986), p. 61). If perspectives are shared among
individuals, they foster communication, otherwise they impede communication. The out-
standing relevance, the psychological concept of perspective may have as a foundation for

analysing and understanding social systems has insistently been characterized by Schiitz:

“Living in the world, we live with others and for others, orienting our lives to them. In
experiencing them as others, as contemporaries and fellow creatures, as predecessors
and successors, by joining with them in common activity and work, influencing them
and being influenced by them in turn — in doing all these things we understand the be-
haviour of others and assume that they understand us. In these acts of establishing or
interpreting meanings there is built up for us in varying degrees of anonymity, in
greater or lesser intimacy of experience, in manifold intersecting perspectives, the
structural meaning of the social world, which is as much our world (strictly speaking,
my world) at the world of the others.” (translated from (Schiitz 1981), p. 17)

To express the support of various perspectives on the enterprise, the term “multi-perspective

enterprise model” has been coined.

A multi-perspective enterprise model is an enterprise model that emphasizes account-
ing for perspectives. The term “multi-perspective” is purposefully overloaded. On the
one hand, it represents different conceptions of perspective. On the other hand, it refers

44

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

to differentiating specific perspectives related to one conception of perspective. The
first conception is a psychological one: In this conception, a perspective represents a
specific professional background that corresponds to cognitive dispositions, technical
languages, specific goals and capabilities of prospective users. The second conception
refers to the representation of perspectives within an enterprise model. In this sense it
relates directly to the respective DSML that are expected to provide concepts that cor-
respond to those characteristic for certain (psychological) perspectives.

To promote semantic equivalence of concepts that are shared by different DSML and, hence,
to allow for a tight integration of respective models, all DSML that are part of an enterprise
modelling method should be specified with the same meta modelling language. A meta

modelling language and the corresponding set of DSML form a language architecture.

An enterprise model should be accessible by software and by humans. The first case implies
a machine readable representation. The second case requires representations that are com-
prehensible for humans. Often, diagrams will be the representation of choice — based on the
assumption that graphical representations are especially suited for reducing complexity and
fostering comprehensibility in cases of multiple mutual relationships. Nevertheless, it can be
appropriate for certain parts of an enterprise model to choose a textual representation. The
complexity of the subject demands for covering different levels of abstraction and detail.
Usually, approaches to enterprise modelling include a conceptual framework to structure an
enterprise into essential aspects (for example: (Scheer 2001), (Zachman 1987)). Such a “ball-
park view” allows developing a common, high-level conception of an enterprise, which
serves as a starting point for further analysis. After a discussion on the “ballpark view” level
resulted in the identification of problem areas, these can be further analysed by developing
more detailed models using corresponding DSML. These models can either represent the
current state of an enterprise or a possible future state. The various models that form an en-
terprise model are represented by corresponding diagrams. Figure 11 shows an example of a
high level model of an enterprise that is associated with various diagrams which are repre-

sentations of models specified with DSML.

45

Enterprise Modelling

Aspects
Resource Structure Process Goal
i i Competitiveness
Strategy Human Resources StrateEiCE Value Chain H

Units

Strategic Goals ®

Technol] Value Syst
0 echnology Joint Ventures alue system Opportunities
=
= "
8 o Employees Organisation Service Operational Goals
o Organisation . Structure
& Skills Process Performance
n 5
g Machinery Project J’k Indicators
IT Infrastructure Service
. SLA
Information Platforms : '
Svst IS Architecture Transaction Performance
ystem Applications i
Obje?Mod | Workflow Indicators
— ITML ? i
Object ML
- Process ML —
Goal ML

Goal Svstem

Inbound

Logisics Operations

Outbourd
Logistics

Marketing
Saies

Serdces

Value Chain Diaaram

> - 2
o e
R A . - I
i Riisiness Process
"
-

TT Reacniirce Diaaram

Nhiect Madel

Figure 11: Exemplary Representation of an Enterprise Model

The term , multi-perspective enterprise model” may be taken one step further by stressing an
additional, critical meta perspectives. It recommends supplementing — and confronting — an
enterprise model with the relevant context, i. e. with aspects that are required for a reflective
interpretation of an enterprise model but that bulk against formalisation. In other words, it

suggests enhancing the engineering approach that is promoted by the use of (semi-) formal
46

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

DSML to design systems, by a reflective, hermeneutic perspective that accounts for the limi-
tations of enterprise models — especially with respect to subtle aspects of organisational psy-
chology such as hidden agendas, opportunistic action, politics, symbolic action, corporate
culture etc. It recommends accounting for interaction, empathy, introspection to gain an
elaborate appreciation of organisations in general, of a specific social setting in a particular
case. With respect to promoting awareness of and discourses about these informal aspects,
they need to be represented in an appropriate form that is suited to supplement an enterprise
model. Examples for possible approaches are the use of images (Morgan 1986), the use of
“rich pictures” or other instruments suggested by the Soft Systems Methodology
((Checkland and Scholes 1999).

5.3 Enterprise Architecture

In recent years, the term “enterprise architecture” has gained remarkable attention. As the

following definitions show, it is closely related to the term “enterprise model”.

“A coherent set of descriptions, covering a regulations-oriented, design-oriented and
patterns-oriented perspective on an enterprise, which provides indicators and controls
that enable the informed governance of the enterprise’s evolution and success.” ((Land,
Waage et al. 2009), p. 34)

“EA is coherent whole of principles, methods and models that are used in the design
and realization of an enterprises organizational structure, business processes, infor-
mation systems, and infrastructure.” ((Lankhorst 2005), p. 3)

These definitions as well as others, e.g. (Urbaczewski and Mrdalj 2006), (Foorthuis and
Brinkkemper 2007), do not point at substantial differences to enterprise models — except for
the fact that Lankhorst subsumes methods under the term, too. Often, the use of the term
“enterprise architecture” is accompanied by the term “enterprise architecture management”.
It stresses the need for a specialised approach to manage the creation and use of enterprise

architectures:

“EA management is a continuous and self maintaining management function seeking
to improve the alignment of business and IT and to guide the managed evolution of an
(virtual) enterprise. Based on a holistic perspective on the enterprise furnished with in-
formation from other enterprise-level management functions it provides input to, ex-
erts control over, and defines guidelines for these enterprise-level management func-
tions. The EA management function consists of the activities develop & describe,
communicate & enact, and analyze & evaluate.” ((Buckl, Matthes et al. 2010), p. 152)

Methods for enterprise modelling are usually also aimed at covering the entire lifecycle of an
enterprise model. Therefore, the differences between enterprise model and enterprise archi-
tecture are mainly related to the intended audience. Enterprise modelling is aimed at various
groups of stakeholders that are involved in planning, implementing, using and maintaining
information systems. Therefore, enterprise models are supposed to offer a variety of corre-

sponding abstractions. These include models that serve as a foundation of software devel-
47

Concluding Remarks

opment. Therefore, the development of respective DSML is a particular characteristic of en-
terprise modelling. Different from that, enterprise architecture mainly targets IT manage-
ment. Therefore, it puts less emphasis on the specification of DSML. If DSML are included in
an approach to enterprise architecture, they will usually not account for implementation is-
sues. In any case, there is no fundamental difference between both approaches. Instead, one
can regard the abstractions focussed by enterprise architectures as an integral part of a more

comprehensive enterprise model.

6 Concluding Remarks

This report is aimed at a proposing the terminological foundation for enterprise modelling.
In this sense, the concepts presented in this report are intended to provide readers with a
framework that helps with getting a better understanding of conceptual modelling in gen-
eral, of enterprise modelling in particular. It is also aimed at contributing to the development
of a common terminological foundation that fosters communication and collaboration. I
would hope that the suggestions made in this report meet this intention to some extent.
However, not all concepts presented in this report are suited for everybody who is interested
in enterprise modelling. Therefore, some concepts are differentiated into basic versions
which should be appropriate for novice users and more elaborate versions. While conceptu-
alising key terms is an important prerequisite for scientific studies, it is not restricted to the
beginning of a research process — like it is the case for building the foundation of a house.
Instead, the process of analysing a subject is characterized by a continuous reflection of key
terms — and their occasional adaptation. Hence, a terminology is both, an instrument for and
a result of analysis. This is even more the case, when we consider essential terms such as
“model”, “language” or “domain”, since it is hard — if not impossible — to reduce them to
other concepts. At the same time, they represent complex constructs that cannot be clarified
by simply pointing at the obvious. Therefore, this report is also intended as a contribution to
an advanced discourse on the terminological foundation of our discipline. This thought cor-
responds to a more general epistemological consideration. Language is a mandatory tool for
thinking. It helps building on proven ways of perceiving and conceptualising problem do-
mains. However, at the same time, it may hamper our creativity by promoting certain kinds
of perception and conceptualisation. This is a dilemma that we can hardly escape. We can
only try to be oblivious of it: On the one hand, by refining existing terminologies and corre-
sponding world views; on the other hand, by occasionally leaning back and trying to go be-

yond the limitations of the concepts that seem constitutional for our way of thinking.

48

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

References

Alpar, P, R. Alt, et al. (2011). Anwendungsorientierte Wirtschaftsinformatik. Strategische
Planung, Entwicklung und Nutzung von Informations- und Kommunikationssystemen.
Wiesbaden, Vieweg.

Argyris, C. (1985). Action Science, Concepts, Methods, and Skills for Research and Interven-
tion. San Francisco, Jossey-Bass.

Barnard, C. L. (1938). The Function o f the Executive. Cambridge.

Berger, P. L. and T. Luckmann (1966). The Social Construction of Reality: A Treatise in the
Sociology of Knowledge. Garden City, N.Y., Doubleday.

Bernus, P. and G. Schmidt (2006). What is an Information System? Handbook on Architec-
tures of Information Systems. P. Bernus, K. Mertins and G. Schmidt. Berlin, Springer: 1-9.

Brynjolfsson, E. (1993). "The productivity paradox of information technology." Communica-
tions of the ACM 36(12): 66-77.

Buck], S., F. Matthes, et al. (2010). A Conceptual Framework for Enterprise Architecture De-
sign. Trends in Enterprise Architecture Research. E. Proper, M. Lankhorst, M. Schonherr, J.
Barjis and S. Overbeek, Springer Berlin Heidelberg. 70: 44-56.

Bunge, M. A. (1977). Treatise on Basic Philosophy: Volume 3: Ontology I: The Furniture of
the World. Dordrecht, Boston, Reidel.

Carr, N. G. (2004). Does IT Matter? Information Technology and the Corrosion of Competi-
tive Advantage. Cambridge, MA, Harvard Business School Press.

Chaffey, D. and S. Wood (2005). Business Information Management. Improving Performance
Using Information Systems. Harlow, London, Prentice Hall.

Checkland, P. and J. Scholes (1999). Soft Systems Methodology in Action. New York, Wiley.

Falkenberg, E. D., W. Hesse, et al. (1998). A Framework of Information System Concepts. The
FRISCO Report, IFIP.

Ferstl, O. K. and E. J. Sinz (2005). Grundlagen der Wirtschaftsinformatik. Miinchen, Wien,
Oldenbourg.

Floyd, C. (1992). Human Questions in Computer Science. Software Development and Reality
Construction. C. Floyd, H. Ziillighoven, R. Budde and R. Keil-Slawik. Berlin et al.: 15-27.

Foorthuis, R. M. and S. Brinkkemper (2007). A Framework for Project Architecture in the
Context of Enterprise Architecture. Proceedings of the TEAR Workshop 2007: 51-60.

Frank, U. (2000a). "Delegation: An Important Concept for the Appropriate Design of Object
Models." Journal of Object-Oriented Programming 13(3): 13-18.

Frank, U. (2000b). "An Important Concept for the Appropriate Design of Object Models."
Journal of Object-Oriented Programming 13(3): 13-18.

Frank, U. (2001). "A Conceptual Foundation for Versatile E-Commerce Platforms." Journal of
Electronic Commerce Research 2(2).

49

Concluding Remarks

Frank, U. (2008). Integration - Reflections on a Pivotal Concept for Designing and Evaluating
Information Systems. Information Systems and e-Business Technologies. R. Kaschek, C. Kop,
C. Steinberger and G. Fliedl. Berlin, Springer. 5: 11-22.

Frank, U. (2010). Outline of a Method for Designing Domain-Specific Modelling Languages.
ICB Research Report University Duisburg-Essen. No. 42.

Frank, U. (2011). Multi-Perspective Enterprise Modelling: Background and Terminological
Foundation. ICB Research Report University Duisburg-Essen. No. 45.

Frank, U. (2012). Specialisation in Business Process Modelling: Motivation, Approaches and
Limitations. ICB-Research Report, University Duisburg-Essen. 51.

Frank, U. and S. Strecker (2009). Beyond ERP Systems: An Outline of Self-Referential Enter-
prise Systems. ICB Research Report, No. 31, University Duisburg-Essen.

Glasersfeld, E. v. (1995). Radical Constructivism: A Way of Knowing and Learning. London,
Falmer Press.

Graumann, C.-F. (1993). "Perspektivitat in Kognition und Sprache." SPIEL: Siegener Periodi-
cum zur Internationalen Empirischen Literaturwissenschaft 12(2): 156-172.

Grossmann, R. (1983). The Categorial Structure of the World. Bloomington, Indiana Universi-
ty Press.

Gruber, T. R. (1992). A Translation Approach to Portable Ontology Specifications. Technical
Report KSL 92-71. S. U. Computer Science Department.

Gutenberg, E. (1929). Die Unternehmung als Gegenstand betriebswirtschaftlicher Theorie.
Berlin, Wien.

Habermas, J. (1984). Theorie des kommunikativen Handelns. Handlungsrationalitat und
gesellschaftliche Rationalisierung. Frankfurt/M., Suhrkamp.

Heinrich, L. J., A. Heinzl, et al. (2010). Wirtschaftsinformatik: Einfithrung und Grundlegung.
Berlin, Heidelberg, Springer.

Henderson-Sellers, B. (2010). "Situational Method Engineering: State-of-the-Art Review."
Journal of Universal Computer Science 16(3): 424-478.

Henderson-Sellers, B. (2011). Random Thoughts on Multi-level Conceptual Modelling. The
Evolution of Conceptual Modeling. From a Historical Perspective towards the Future of
Conceptual Modeling. R. Kaschek and L. Delcambre. Berlin, Heidelberg, Springer: 93-116.

Kant, I. (1976). Kritik der reinen Vernunft. Frankfurt/M., Suhrkamp.

Klein, H. K. and K. Lyytinen (1992). Towards a New Understanding of Data Modelling.
Software Development as Reality Construction. C. Floyd, H. Ziillighoven, R. Budde and R.
Keil-Slavik. Berlin et al.: 86-100.

Kiinne, W. (2003). Conceptions of Truth. Oxford, Oxford University Press.

Land, M. O. t,, M. Waage, et al. (2009). Enterprise architecture: Creating value by informed
governance. Berlin, Springer.

Lankhorst, M. (2005). Enterprise Architecture at Work. Modelling, Communiation and Anal-
ysis. Berlin, Heidelberg, New York, Springer.

50

Multi-Perspective Enterprise Modelling: Background and Terminological Foundation

Laudon, K. C. and J. P. Laudon (2005). Essentials of Management Information Systems. Man-
aging the Digital Firm. Upper Saddle River, NJ, Pearson/Prentice Hall.

Luhmann, N. (1977). Zweckbegriff und Systemrationalitat. Frankfurt/M., Suhrkamp.

Luhmann, N. (1984). Soziale Systeme. Grundrifs einer allgemeinen Theorie. Frankfurt/M.,
Suhrkamp.

Mahr, B. (2009). "Die Informatik und die Logik der Modelle." Informatik Spektrum 32(3): 228-
249.

Mata, F. J., W. L. Fuerst, et al. (1995). "Information Technology and Sustained Competitive
Advantage: A Resource-Based Analysis." MIS Quarterly 19(4): 487-505.

Maturana, H. R. (1987). Kognition. Der Diskurs des Radikalen Konstruktivismus. S. J.
Schmidt. Frankfurt/M., Suhrkamp: 89-118.

Maturana, H. R. and F. J. Varela (1987). The Tree of Knowledge: The Biological Roots of Hu-
man Understanding. Boston, New Science Library.

Meyer, B. (1997). Object-Oriented Software Construction, Prentice Hall International.
Morgan, G. (1986). Images of Organization. Thousands Oaks, London, New Delhi, Sage.

Mylopoulos, J. and H. J. Levesque (1984). An Overview of Knowledge Representation. On
Conceptual Modelling. Perspectives from Artificial Intelligence, Databases and Program-
ming. M. L. Brodie,]. Mylopoulos and J. W. Schmidt. Berlin

Heidelberg, Springer: 3-17.
O'Toole, J. (1995). Leading Change. San Francisco, Jossey-Bass.

Olivé, A. (2007). Conceptual Modeling of Information Systmes. Berlin, Heidelberg, New
York, Springer.

Ortner, E. (1997). Methodenneutraler Fachentwurf. Stuttgart, Leipzig, Teubner.
Parsons, T. (1978). Action Theory and the Human Condition. New York, Free Press.

Pfeffer, J. (1981). Management as as Symbolic Action. The Creation and Maintenance of Or-
ganizational Paradigms. Research in Organizational Behavior. L. L. Cummings and B. M.
Staw. Greenwich, London. 3.

Porter, M. E. and V. E. Millar (1985). "How Information Gives You Competitive Advantage."
Harvard Business Review 63(4): 149-160.

Scheer, A. W. (2001). ARIS - Modellierungsmethoden, Metamodelle, Anwendungen. Berlin,
Springer.

Schiitte, R. (2000). Zum Realititsbezug von Informationsmodellen. U. D.-E. Institut fiir Pro-
duktion und Industrielles Informationsmanagement. Essen.

Schiitz, A. (1981). Der sinnhafte Aufbau der sozialen Welt. Frankfurt/M., Suhrkamp.
Schwarzer, B. and H. Krcmar (2004). Wirtschaftsinformatik. Stuttgart, Schaffer Poeschel.

Schwemmer, O. (1984). Ontologie. Enzyklopadie Philosophie und Wissenschaftstheorie. J.
MittelstrafS. Mannheim, B.I. Wissenschaftsverlag. 2: 1077-1079.

51

Concluding Remarks

Shannon, C. E. (1948). "A Mathematical Theory of Communication." The Bell System Tech-
nical Journal 27: 379-423.

Simon, H. A. (1949). Administrative Behavior. A Study o f Decision-Making Processes in
Administrative Organization. New York.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien, Springer.

Stachowiak, H. (1983). Konstruierte Wirklichkeit. Modelle — Konstruktion der Wirklichkeit.
H. Stachowiak. Miinchen: 10-16.

Stegmidiller, W. (1986). Kripkes Deutung der Spatphilosophie Wittgensteins. Kommentarver-
such iiber einen versuchten Kommentar. Stuttgart.

Urbaczewski, L. and S. Mrdalj (2006). "A comparison of enterprise architecture frameworks."
Issues in Information Systems 7(2): 18-23.

Weick, K. E. (1979). The Social Psychology of Organizing. New York, McGraw-Hill.

Williamson, O. E. (1985). The Economic Institutions of Capitalism, Firms, Markets, Relational
Contracting. New York.

Wittgenstein, L. (1981). Tractatus Logico-Philosophicus. Englewood Cliffs, NJ, Routledge
Kegan Paul.

Wittgenstein, L. (2001). Philosophical Investigations. The German Text, with a Revised Eng-
lish Translation. Malden, MA; Oxford: Carlton, Blackwell.

Wittmann, W. (1959). Unternehmung und unvollkommene Information. Kéln, Opladen.

Wollnik, M. (1986). Implementierung computergestiitzter Informationssysteme. Berlin, New
York.

Wolters, G. (1984). Modell. Enzyklopadie Philosophie und Wissenschaftstheorie.]J. Mittel-
strafs. Mannheim, Wien

Zirich, Bibliographisches Institut. 2: 911-913.

Wright, G. H. v. (1971). Explanation and Understanding. Ithaca, NY, Cornell University
Press.

Wright, G. H. v. (1974). Erklaren und Verstehen. Frankfurt/M., Athenaum Fischer.

Zachman, J. A. (1987). "A framework for information systems architecture." IBM Systems
Journal 26(3): 276-292.

Zelewski, S. (1995). Petrinetzbasierte Modellierung komplexer Produktionssysteme. Arbeits-
bericht des Instituts fiir Produktionswirtschaft und industrielle Informationswirtschaft. Es-
sen, Universitat Leipzig

52

Previously published ICB - Research Reports

2011
No 45 (November 2011)

Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur Er-
stellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)
Berenbach, Brian; Daneva, Maya; Dorr, Jorg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;
Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,
Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and
RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),
and the REFSQ 2011 Doctoral Symposium™

No 43 (February 2011)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture — 2nd Edi-
tion”

2010
No 42 (December)
Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”
No 41 (December)

Adelsberger,Heimo,; Drechsler, Andreas (Eds): “Ausgewihlte Aspekte des Cloud-Computing aus einer
IT-Management-Perspektive — Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Biirsner, Simone; Dorr, Jorg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):
“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-
ty. Proceedings of the Workshops CreaRE, PLREQ, RePriCo and RESC”

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption fiir den Studien-
gang M.Sc. Wirtschaftsinformatik an der Fakultit fiir Wirtschaftswissenschaften der Universitit Duis-
burg-Essen”

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschitzungen von CIOs und
WI-Professoren”

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-
ity Modelling of Software-intensive Systems”

Previously published ICB - Research Reports

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstindnis der IT-Governance - An-
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Riingeler, Irene; Tiixen, Michael; Rathgeb, Erwin P.:”Considerations on Handling Link Errors in
STCpP”

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo,; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: , Einsatz von Social Software in Unternehmen — Studie
iiber Umfang und Zweck der Nutzung”

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kiitz, Martin; Riiding, Otto; Schauer, Hanno; Strecker, Stefan:
. Leitbild IT-Controller/-in — Beitrag der Fachgruppe IT-Controlling der Gesellschaft fiir Informatik
e. V. g

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems — Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: , Kriterien guter Wissensarbeit — Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-
iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: ,,Computer Aided Assessments and Programming
Exercises with JACK”

No 27 (December 2008)
Schauer, Carola: “GrifSe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universititen im
deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Miiller-Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am
Beispiel der CRC Card-Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture — Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jiirgen: “Enterprise Modelling in the Context of Manufacturing — Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-intensive Systems”

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilitit im Geschiftsprozess-management-
Kreislauf”

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradiiberwachung von Software”

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ,Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen fiir die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of
Model Curricula”

No 16 (May 2007)
Miiller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-
pacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen fiir IT-Professionals — Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden fiir Soft-
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

Previously published ICB - Research Reports

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstiitzung der Aufgaben des
IT-Managements — Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einfiihrender Lehrbiicher der

Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Uberlequngen zur Qualifizierung des wissen-
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag fiir ein Forschungspro-

gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-

search”

No 6 (April 2006)
Frank, Ulrich: ”Evaluation von Forschung und Lehre an Universititen — Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jiirgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part III — Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II — Results Information Sys-

tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I — Research Objectives and

Method”

No 1 (August 2005)
Lange, Carola: , Ein Bezugsrahmen zur Beschreibung von Forschungsgegenstinden und -methoden in

Wirtschaftsinformatik und Information Systems”

Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Core Research Topics

E-learning, Knowledge Management, SkillManagement,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker

Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Kliver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Miiller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. E. Rukzio
Mobile Mensch Computer Interaktion mit Software Services

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. R. Unland

Data Management Systems and Knowledge Representation

Data Management, Arfificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

For more information visit us on the Web: hitp://www.icb.uni-due.de

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

	DocumentServlet-1.537.247.602.065
	ICB-Report-No46

