.: DuEPublico

MEM O Organisation Modelling Language (2): focus on business processes

Frank, Ulrich
In: ICB Research Reports - Forschungsberichte des ICB / 2011

Thistext is provided by DuEPublico, the central repository of the University Duisburg-Essen.

Thisversion of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47065

URN: urn:nbn:de:hbz:464-20180918-065639-7

Link: https.//duepublico.uni-duisburg-essen.de/servlets'DocumentServl et?i d=47065

License:
Aslong as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage
only with permission, except applicable rules of german copyright law.

Source: |CB-Research Report No. 49, December 2011

https://doi.org/10.17185/duepublico/47065
http://nbn-resolving.org/urn:nbn:de:hbz:464-20180918-065639-7
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47065

& _ IcB
V Institut fur Informatik und
Wirtschaftsinformatik

Ulrich Frank

MEMO Organisation Modelling Language (2):

Focus on Business Processes

UNIVERSITAT |CB-Research Repor’r No. 49
IJEus ISslg?'Nu R G December 2011

Die Forschungsberichte des Instituts
fir Informatik und Wirtschaftsinfor-
matik dienen der Darstellung vorldu-
figer Ergebnisse, die i. d. R. noch fiir
spadtere Verdffentlichungen iiberarbei-
tet werden. Die Autoren sind deshalb
fir kritische Hinweise dankbar.

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica-
tions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Ubersetzung, des Nachdru-
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen — auch bei
nur auszugsweiser Verwertung.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Authors’ Address:
Ulrich Frank

Lehrstuhl fir Wirtschaftsinformatik

und Unternehmensmodellierung

Institut fiir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

D-45141 Essen

ulrich.frank@uni-due.de

ICB Research Reports
Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff

Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke
Prof. Dr. Volker Gruhn

PD Dr. Christina Kliiver
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Miiller-Clostermann
Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Enrico Rukzio
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

Contact:

Institut fir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

45141 Essen

Tel.: 0201-183-4041
Fax: 0201-183-4011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

Abstract

An enterprise model comprises various abstractions of an enterprise that represent both in-
formation systems and the surrounding action systems. These different models are integrat-
ed in order to avoid redundant work and to contribute to a tight and consistent integration
of action systems and information systems. For this purpose, the method MEMO (Multi-
Perspective Enterprise Modelling) features a family of modelling languages, each of which is
aimed at representing specific perspectives and aspects of an enterprise. Within the MEMO
languages, the Organisation Modelling Language (MEMO OrgML) is of outstanding rele-
vance. Its specification is distributed on two reports. A previous report focussed on the speci-
fication of the organisation structure. This report presents the part of the language specifica-
tion that allows for modelling business processes. It builds on a further previous report that
presents the results of an extensive requirements analysis. The report starts with an analysis
of basic concepts and a discussion of peculiarities related to the specification of a process
modelling language. Subsequently, the language specification is presented. It comprises a
meta model with supplementary constraints, detailed comments on core language concepts
and a dictionary of the notational symbols in two variants. Finally, the use of the language is

demonstrated with examples.

Table of Contents

TYPOGRAPHICAL CONVENTIONS eeeeeeeeereneeeeeenenesesesesesesesssesesssesesesssesesesssssesenes VIII
ACKNOWLEDGEMENTS . ttcenitcnisceniesiensssssessssssesessssssssssessssssssesssssssssssssssssssessassseseses IX
1 INTRODUCTIONiiiiicriteniseseensssessnsesessnssssesenes 1
2 BASIC CONCEPTSurttcteeitstcnentssessesisesessssssesssssssesesssssessssssssssssessasssssessssssssssesssssssessannsseses 4
2.1 PROGCESS. ..ccutetiriteieriteteeteteetee ettt et e s et s rt e et st e bt st e st s e e bt e s e bt e s e bt et e ebe e st sae e et smtesnesmnesneennesneennenseens 5
2,11 BUSINESS PTOCESS «..vvvveviieiicieiiciciictctet et 5

2.1.2 SUDPIOCESS ...ttt 6

N) N OO 7
2.2.1 A Generic Taxonomy 0f EVEREScccvviviiiiiiiiiiiiiiiiiicciiic s 8

2.2.2 Conceptualiation of EVENEScccovviviiiiiiiiiiiiiiiciiiciccccc 10

2.3 EXCEPTION ..oiuiuiuisisiaisisisisiststsisssssisssnsssnsssnsssssssnsnsnsnsssnsnsnsnsnsnsssnsnsnsas 14

3 CONTROL FLOWieicrctcnincscnensssessnsesesssnsesesenes 18
3.1 BASIC CONTROL STRUCTUREScoeviurirtiiiniintetetiisie sttt 18
31T SCGQUETICE....evviieiicieiicteictet et 18

3.1.2 Exclusive Choice (BYanching).........cccoovvviviiiviiiiiisisiiiieicieiiicesississ st 19

T G B 0oy T 7 o OO 20

3.1.4 Synchronisation of concurrent paths of eXeCULION...........cccvvvvvviiviiiiiiiiiniiciiiic 21

3.2 MODELLING SHORTCUTScotuiuetetisianinietissiste sttt bbbt bbbt s e 28
3.2.1 Merging of Alternative BYANCHESccocvviviiiiiiiiiiiiiiiiiiiic 28

3.2.2 AQQTeate SUDPTOCESSc.ccvvvvviiiiiiiiiiiiciciciiiicct 31

3.2.3 TEOTALION ..ottt 34

4 ADVANCED CONTROL STRUCTURESuuriteiititctenisctcninsscsnnsssessssssesssssssssesssssesens 41
4.1 ARBITRARY SEQUENGCE......cocitititiiiitititiiiiste sttt bbbt bbb bbbt bbb 41
4.2 ARBITRARY SEQUENCE WITH PARTIAL ORDER......c.cooviurtitiiiinieteiissintestsisis e 42
4.3 SYNCHRONISATION EXCEPTIONcoctitiiiiitetetiiiinieteisisis ettt bbb 43
4.4 EXCLUSIVE SYNCHRONISATION.......cetitiiuiuntetesisiintesstssssis sttt ettt bbb bbb s s 45
4.5 RELAXED CONCURRENCYoootiiiimiuiiititiiniiniesesitssie ettt bttt b bbb bbb bbb 47
4.6 VARIABLE NUMBER OF CONCURRENT INSTANCES.......cceetiiiirieteiiiiiniettsisie it 48

5 LANGUAGE SPECIFICATION.....uitieiiicscteniesisennsisessnsesessssssssesssssssessssssessssssssssessassssenes 53
5.1 META MODEL...utuiuiuiuiiiiisisisisisisisisistissssssisssssssss st sttt ss et ss s s st ss s s s s s s s s e s s s s s s s s s s s e s s s s s s s ssssssssnsssnssensns 53
5.2 LANGUAGE CONGCEPTSouetiiiiiietetisiisietestisis ittt st 63
5.3 CONCRETE SYNTAXotiuitetiiiiiiieteteitisie ettt sttt bbbt b bbbt s e 71

6 EXAMPLESritetetctitcrititetsnssiesissssssssessessessessessessessessessessessesssssessessssssssesessesessesessessesssssessesees 89

6.1 BUSINESS PROCESS IMIAPccuiiiiiiiiiiiiiiitcictcce ettt s e 89
6.2 PROCESS (DE-) COMPOSITION DIAGRAMccuertitetetentrtnienieniensensestessestessessessensensesenseseeseesessessessessenne 90
6.3 PROCESS INHERITANCE DIAGRAMcoiiiiiiiiiiiiiiiciciccc sttt e 90
6.4 ORDER MANAGEMENTcooeciitiitiietiieteneeenteteree e et ettt saesesseseeteseesesesesaesesae st saenesaesesaesesaeseenenesnennen 91
0.4. 1 CUTTENE PYOCESS ..ottt sttt sttt st sttt nreeanens 91

6.4.2 AIETNALIUE VEFSION ...ttt sttt 92

6.5 PROCUREMENT (ECOMOD)coiiiiiiriiniiiiienieteteteteiteit ettt ettt et st ettt ettt et e et ese e 93
6.6 “LIGHT” INOTATION ...ooiuiiuiiiiiiiiiiitiiiiestetete ettt a e 95

7 EVALUATION OF THE MEMO ORGMLuiniiniiinniineinissiessissessesssisesssessessssssessssssssssessssssessses 97
8 CONCLUSIONS AND FUTURE WORK......cccccoviiiinriniinrinnissisucssissanssesssessesssessssssessssssessssssesssessassases 110
REFERENCEScootiitiititiitiiintistseiiseseisstsssisesssissesssisssssstsssessessssssessssssssssssssssssssssssessssssasssessesssessassasss 111

Figures

FIGURE 1: KEY MODELLING CONCEPTS AND CORRESPONDING LEVELS OF ABSTRACTIONccceviuvreeeeeeinnreeeeeennnns 5

FIGURE 2: ILLUSTRATION OF ASSOCIATIONS BETWEEN BUSINESS PROCESS TYPES (PRELIMINARY NOTATION) .. 6

FIGURE 3: GENERIC META TAXONOMY OF EVENTSceeutistteterteetesseetesseesesseesesseessesssessesssessesssessesssessesssessesssesseens 8
FIGURE 4: REVISED TAXONOMY OF EVENTS IN THE CONTEXT OF BUSINESS PROCESSESc..ceervtervernieerieenneenneens 12
FIGURE 5: ILLUSTRATION OF ORDER FOR COMBINING EVENT SYMBOLS (PRELIMINARY)....ccceeruerrerrerrenreeeennennne 13
FIGURE 6: MARKING AN EVENT AS OVERLOADED (PRELIMINARY)oeeutertireenrieeenreenenneeeeseesesseesnesnensessessesnns 14
FIGURE 7: SYMBOLS TO REPRESENT STARTING AND TERMINATING EVENTS (SELECTION, PRELIMINARY) 14
FIGURE 8: TAXONOMY OF EXCEPTIONSuvteruttrttenuteriteestessseesseeesseesseesssaesssessseesssessseesssessseessesssaesssessseessesssassnsees 16
FIGURE 9: EXAMPLE FOR ASSIGNING AN EXCEPTION TYPE TO A PROCESS TYPE (PRELIMINARY)...c..cocerveeeennenne 17
FIGURE 10: ILLUSTRATION OF SEQUENCE ..c.uttrstteruteriteenteesieesutessseesseessseessessseessessseesssessseessessseesssessseessesssaesses 19
FIGURE 11: EXAMPLE REPRESENTATION OF TWO WAY BRANCHINGceecteriierienniienieenieeseeesseesssessseessessseesees 20
FIGURE 12: REPRESENTATION OF PARALLEL EXECUTIONeerutteruteriterteentesieesteesseesstessseessessseesssessseessessseesses 21
FIGURE 13: ILLUSTRATION OF SYNCHRONISATION RULES....cccutttrtterttrrrienieeieesteeseeesseessseeseessseesssessseessesssaesses 24
FIGURE 14: CONJUNCTIONAL SYNCHRONISATION OF PARALLEL PATHS......vtieieieeiteeeereeeeereeeeneeeeereeeenaneeenseeeas 25
FIGURE 15: CONJUNCTIONAL SYNCHRONISATION OF DIFFERENT LEVELS OF PARALLELISATIONccocvevennee... 25
FIGURE 16: SYNCHRONISATION OF SYNCHRONISED PARALLEL PATHScccveeteieeereieseeeseeseessessensessensessessesnes 25
FIGURE 17: COMBINATION OF CONJUNCTIONAL AND DISJUNCTIONAL SYNCHRONISERScccveeereeeeneeeeneennns 26
FIGURE 18: IRREGULAR COMBINATION OF CONJUNCTIONAL SYNCHRONISERSccvveteeriurreeeeeernreeeeeesinreeeeeesenns 27
FIGURE 19: IRREGULAR COMBINATION OF DISJUNCTIONAL SYNCHRONISERS.......cvvvteiieriirreeeeeeinreeeeeesenreeeeeesenns 28
FIGURE 20: MERGING OF TWO ALTERNATIVE PATHS, STARTING WITH COMMON EVENTcoccterriernreerrennieenneens 29
FIGURE 21: MERGING OF TWO ALTERNATIVE PATHS, STARTING WITH COMMON PROCESSccocverrreerreereenneens 29
FIGURE 22: MERGING TWO EXCLUSIVE CHOICESceccuteruteeieeritersieestesnreessessseessessseesssessseessessseesssessseessesssaessses 30
FIGURE 23: PARTIAL MERGING OF TWO ALTERNATIVE EXCLUSIVE CHOICES.......cecvterieiritenienreenieeieesreesseeseens 31
FIGURE 24: AGGREGATED PROCESS AS REPLACEMENT OF SEQUENCE ...ccevertttrieeniienieenieeneesnreesssessseessessseessens 32
FIGURE 25: REPRESENTATION OF BRANCHING PROCESSES.....c.utttstterieetienieeieesteessteseessseessessseesssessseessessseesses 33
FIGURE 26: REPLACEMENT OF PARALLEL PATHScetttteteesiteniteesieesitesteestesteesatessseesasessseesssesssaessessseessesssaesses 33
FIGURE 27: EXAMPLE OF PROHIBITED USE OF AGGREGATED PROCESSceertttrieeriienieeniteneesnreessessseessessseessees 34
FIGURE 28: REPRESENTATION OF AN ITERATION WITHOUT SPECIFIC CONCEPTSceecterruterierrienieenreesreesseenneens 34
FIGURE 29: REPRESENTATION OF NESTED ITERATIONS WITHOUT SPECIFIC CONCEPTSccccverrvierrerieerreenieenaeens 35
FIGURE 30: EXAMPLE OF AN ITERATION WITH “REPEAT UNTIL” LOGICScccvttrteereierierniieneesnreesseessseesseesseeseens 36
FIGURE 31: EXAMPLES OF MULTIPLE ALTERNATIVE EVENTS FOLLOWING AN ITERATION.....cccctervuerrreerrernneenaeens 36
FIGURE 32: EXAMPLE OF A “WHILE” CONTROL STRUCTUREeecuteruttrrtienierieesieeneeeseeesseeseessseesssessseessesssaessses 37

iv

FIGURE 33: NESTED ITERATIONSeeeeieeiiuriteeeeeitteeeeeeeireeeeeeeeissseeeeeesssesseeesssesssessssssssessessssssessssssssessesessssssesessnnnes 37

FIGURE 34: PARALLEL PATHS OF EXECUTION WITHIN AN ITERATION BODY ...ccceeevuierierniieniernriensiensieesseesseeseens 38
FIGURE 35: NESTED ITERATION WITH BRANCHINGceeruterieeruierrieeniteesreestesieesseesseesssessseessessseesssessseessesssaessses 39
FIGURE 36: SYNTACTICALLY WRONG REPRESENTATION OF NESTED ITERATIONccveeverueriererneenneeneenseeneenseenes 39
FIGURE 37: CORRECT REPRESENTATION OF NESTED ITERATIONcccvveterterieneeeeesseesesseessesssessesssessesssensessensesnes 40
FIGURE 38: EXAMPLE OF ARBITRARY SEQUENCEeccuttrteerieeruiersieeniteenteestesseessessseesssessseesssessseesssessseessesssaesses 41
FIGURE 39: EXAMPLE OF PARTIAL ARBITRARY ORDERcecctttrteerueereernreentesseestessseesssessseessessseesssessseesssesssaessses 42
FIGURE 40: USE OF A SYNCHRONISATION EXCEPTIONceectttsuterrueenuternrtentesseessessseesseessseesssessseesssessseesnsesssaesses 44
FIGURE 41: EXAMPLE OF AN EXCLUSIVE SYNCHRONISATION (PRELIMINARY) ...ccevuteuereenuereerenrenreerenreeeenneenns 46
FIGURE 42: ALTERNATIVE REPRESENTATION WITH ADDITIONAL FINAL EVENT (PRELIMINARY)cocvevervenenn 46

FIGURE 43: RELAXED CONCURRENCY, CONCURRENCY EXCEPTION AND EXCLUSIVE SYNCHRONISATION
(PRELIMINARY) c.etetteuteeiteteeeenteeeesteestesueeaesmeesesmeessesmseseemeesseessesseensesmtensesmeensesmnensesmsensesnsesseensesseensesneenseennes 48

FIGURE 44: EXAMPLE OF MULTIPLE CONCURRENT INSTANCES WITH CONJUNCTIONAL SYNCHRONISATION

(PRELIMINARY) c.etetteuteetteteeeenteeeesteestesseetesueesesseessesseesstemeesseessesstensesaeensesmeensesmsensesmsensesnsesseesesseensesmeenseennes 50
FIGURE 45: MULTIPLE CONCURRENT INSTANCES WITH ALTERNATIVE SYNCHRONISERS (PRELIMINARY) 50
FIGURE 46: RESTRICTED CONJUNCTIONAL SYNCHRONISATION (PRELIMINARY).....cevuerueerereerenrenrennenreeeennennns 51
FIGURE 47: DIFFERENCE BETWEEN SPECIFICATION STYLESueecveetetietesieeteneeetesseessesseessesseessesssessessessesssensesnes 53
FIGURE 48: MEMO ORGML META MODEL - FOCUS ON PROCESSES........cccceeteterreererneesseseesseseessessessesssessesnes 56
FIGURE 49: SYMBOLS TO REPRESENT ASSOCIATIONS BETWEEN BUSINESS PROCESS TYPES......cccvecverveevenreeeeneeenss 86
FIGURE 50: COMMENTS AND CONSTRAINTS.......ueeetestererserserseessesseessesssessesssessesssessesssesssessessssssesssessesssessesssessesnes 88
FIGURE 51: CONNECTOR......ueeteeutetesseenseaseesseaseessesssesseassesseessesssessesssessesssensesssessesssessesssesssessesssessesssessesssensesssensesnes 88
FIGURE 52: BUSINESS PROCESS MAPceiiitiiitiiiteniteiitesteesitesiteesieesitesbeesasesbeesasessseesasesssaesssessaessessseesusesssaesnses 89
FIGURE 53: ILLUSTRATION OF PROCESS (DE-) COMPOSITION DIAGRAMcoueruiriinrerenieieieieeeieeeneeeeneseesseenes 90
FIGURE 54: ILLUSTRATION OF PROCESS INHERITANCE DIAGRAMccocttirierieinieenitenieeiteseessreesisessseesseesseeseens 91
FIGURE 55: EXISTING ORDER MANAGEMENT PROGCESScccveeteiieeieieeienteeiesseetesssessesseessesssessesssessesssessesssessesnes 92
FIGURE 56: ALTERNATIVE DESIGN OF ORDER MANAGEMENT PROCESScccveetireieiereeeieseesreeeenseesensessenseenes 92
FIGURE 57: HIGH-LEVEL PROCESSccouttertterttritentesittesteesteesiteesseesstessbeesssesseesssessseesssesssaesssessseesssessseessessseesses 93
FIGURE 58: MULTI-PERSON EVALUATION OF OFFERS.......ccceetesteetesreeseensessesseessessesssesssessesssessesssessesssessesssessesnes 94
FIGURE 59: MANUAL ORDER ENTRYcoetirtiiiertieiertestestetestetesteseestesseessessessessssssesseessesssessesssessesssessesssessesnes 95
FIGURE 60: "LIGHT" NOTATION - EXAMPLE DIAGRAM Loiiiiiiieiieiieieieeiesee ettt e e se e sneenes 96
FIGURE 61: "LIGHT" NOTATION = EXAMPLE 2......cccttrtesteseeteeeesteeteteetesseessessesssesssessessesssesssessesssessesssensesssensesnes 96

Tables

TABLE 1: DIFFERENT TYPES OF SUBPROCESSES (PRELIMINARY NOTATION)cvetetetenteteeeeeeeeeeesessensessensessenne 7
TABLE 2: GENERIC CATEGORIES OF EVENTS.....c..cettrtertetentetetetentetestesessessessessessessensensensensensensensententesessessessessessense 9
TABLE 3: SYMBOLS TO REPRESENT BASIC CLASSES OF EVENTS (PRELIMINARY)...c..eovertenteterenteteeeeeneeeesensensennes 13
TABLE 4: SYMBOLS TO REPRESENT BASIC CLASSES OF EXCEPTIONS (PRELIMINARY)cveuvereteeeieeeneeeneneensennes 16
TABLE 5: SYMBOLS TO REPRESENT TYPES OF BRANCHING DECISIONS (PRELIMINARY)c.cccveueueeieeerenenensensennes 19
TABLE 6: SYMBOLS TO REPRESENT THE NUMBER OF EXECUTIONS (PRELIMINARY) ...c.vevvetereteeeeeeeeeenensensennes 49
TABLE 7: AUXILIARY TYPES ...ttt ettt st ettt sae ettt et e e st e s st eaesaeesaesaeesnesmn e neemnenneensenneenns 55
TABLE 8: CONSTRAINTS ...c.cuteuteuteuteutentemeettesessesteesessestestessensestensententestestsstesteseesessessessessessensensentensensenteneentenessessenses 63
TABLE 9: COMMENTS ON ANYPROCESS ...c..eeutrtteterientisteientetetestestestet st ssteses e saesaessesaesaesesentessessenteseentesessessenses 65
TABLE 10: COMMENTS ON BUSINESSPROCESS.......cucotirteteteteteteteteeniesieesessessessessesseseensensensensenseneeseesessessessenses 66
TABLE 11: COMMENTS ON CONTROLFLOWSUBPROGCESSccteteuteuteueritrsenreniessensensessessensensensensenseneeseeeesessessenses 69
TABLE 12: COMMENTS ON EVENTccutitriteitiiniinientententeteneetetetetest et et sseesesbestestessesseseesensesteneeneeneeneestesessesseses 70
TABLE 13: ELEMENTS OF THE GRAPHICAL NOTATION: PROCESS SYMBOLS.......cccotrtenieieieteneeteneeneeeeesseneennes 72

.. 73
TABLE 16: REPRESENTATION OF COMPOSED EXCEPTION TYPESccvvetesiieieneeeieneeieseeesseseesseseesseesessessensesnes 74
TABLE 17: REPRESENTATION OF BRANCHINGS AND MERGERScccuttrittirieritenieeniteneeesseessessseesssessseessessseesses 76
TABLE 18: REPRESENTATION OF SYNCHRONISERScccveeuteterrtereestesseeeensessessesssesseessesssessesssessessssssesssessesssessesnes 77
TABLE 19: REPRESENTATION OF ITERATIONSeeeuteritterteritenuteesieenieesnseestesseessessseesssessseessessseesssesssaessessseesses 79
TABLE 20: REPRESENTATION OF VARIABLE NUMBER OF CONCURRENT INSTANCEScccecteruerierennrenreeeeneeenns 80
TABLE 21: RELAXED CONCURRENCY, CONCURRENCY EXCEPTION AND EXCLUSIVE SYNCHRONISATION........ 81
TABLE 22: REPRESENTATION OF SYNCHRONISATION EXCEPTIONccctesttetenteerereeeeesseesseseessesssessesssensesssensesnes 83
TABLE 23: REPRESENTATION OF ARBITRARY SEQUENCES........cecteterteetenteetenseessesseessesseessesssessesssessesssessesssessesnes 84
TABLE 24: PROCESS COMPOSITION/DECOMPOSITIONcveteteriereesresseeeseesassessessessessessessessessessessessessessessessesenses 84
TABLE 25: SYMBOLS FOR REPRESENTING PROCESS SPECIALISATION......ccutetereeeienereeesseessesseessesssessessessesssensesnes 85
TABLE 26: ASSIGNING TASKS TO PROCESSESeeeuttiiterteritenieerieesteesteessesteessessseesssessseessessseesssessseesssesssaesses 87
TABLE 27: GENERIC REQUIREMENTS FOR DSMLcoioiiiiiiieeiieieeieeeteeete ettt sneenes 99
TABLE 28: GENERAL REQUIREMENTS FOR ORGANISATION MODELLING.ccctteteteeerereeerereeesessessesseesseseensens 101
TABLE 29: SPECIFIC REQUIREMENTSecttestietteteeseersesseesseseessessessesssessesssessesssesssessesssessesssessesssessesssessesssessssnsens 109

Vi

vii

Typographical Conventions

If textual elements of meta models (or the meta meta model respectively) are referred to in

the standard body text, they are printed in Arial, e.g. OrganisationalUnit.

viii

Acknowledgements

Sebastian Bittmann provided valuable support with the specification of constraints that sup-

plement the meta model. Nevertheless, I am a responsible for any possible errors.

iX

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

1 Introduction

Models of business processes are widely accepted as a key abstraction of any organisation. This is for
various reasons. Firstly, business process models are literally a representation of how an organisation
works on the operational level. Hence, they serve a documentation function for those, e.g. new em-
ployees, external consultants etc., who are interested in understanding essential tasks in an organisa-
tion and how they are performed. This does not only relate to the flow of control that characterises a
process, but also to the resources it requires, the risks it holds and the goals, it is aimed at. Secondly,
business process models are both subject and instrument of analysing and eventually improving the
efficiency of an organisation. They support to focus on those aspects that are relevant for efficiency,
e.g. provision of resources, execution time, bottlenecks, etc. Thirdly, they provide a conceptual foun-
dation for the design of software systems that support executing and monitoring business processes.
They also support the collaboration of business people and IT experts since they provide a representa-
tion of an organisation’s action system that is regarded as comprehensible by most stakeholders.
Hence they serve as a common reference, thereby supporting to overcome frequent language chasmes.
Finally, business process models contribute to a more focussed and customer-oriented perception of
an organisation’s action system. A business process is directed towards an outcome that is supposed
to satisfy an external or internal customer. Different from traditional functional division of labour,
where — in the extreme case — every employee saw only the function he was in charge of, a business
process constitutes a coherent pattern of work that does not only direct the various functions towards
a common goal, but that can also influence the employees attitude to become more goal- or customer-

oriented.

Against this background, it is not surprising that business process modelling in general, business pro-
cess modelling languages in particular have gained remarkable attention both in research and prac-
tice. There is a plethora of approaches that originate in computer science and that focus on a sound
formal foundation for business processes. On the one hand, they are aimed at proving certain features
of a process, e.g. that it does not include any deadlocks. On the other hand, they intend to provide
executable models. The most notable example for approaches of this kind are Petri nets, which come
in many different flavours, some especially designed for workflow or business process modelling (e.g.
Van der Aalst 2002). While formal languages provide clear advantages with respect to the consistent
execution of business processes and hence to the integrity of a corresponding information system, they
usually lack an elaborate representation of business-related aspects, such as the differentiation of spe-
cific types of processes or resources. Event-Driven Process Chains (EPC) put more emphasis on the
support of business-oriented analysis. There were a few attempts to formalise them (e.g. Wehler and
Langner 1998, Rittgen 2000) as well as principal obligations concerning the feasibility of such attempts
(Van der Aalst et al. 2002). The language has evolved mainly through extensions of a corresponding
toolset. It still includes concepts that lack a specification of their semantics, e.g. resource “types” that
are reduced to the provision of graphical symbols. As a consequence of the increasing relevance of

workflow management systems, a few initiatives emerged that target the standardisation of workflow

1

Introduction

specifications. The Business Process Execution Language for Web Services (BPELAWS, Andrews et al. 2003)
is an application of XML schema that is propagated by a coalition of large IT vendors. It is a successor
of the Workflow Process Definition Language (WPDL, Coalition 1996), which was proposed by the Work-
flow Management Coalition. It serves to specify schemas of workflow management systems. It does
not include a graphical notation. A further initiative under the umbrella of the OMG was created to fill
that gap: The Business Process Modelling Notation (BPMN) started to supplement a graphical notation
for representing business processes, which are specified by a specification language as BPEL4WS
(OMG 2008). In a later version BPMN includes a specification of the execution semantics itself (OMG
2009). As a consequence, it does not depend on BPEL anymore for specifying executable workflow
models. While BPMN includes a plethora of concepts that allow accounting for peculiarities of busi-
ness processes, the specification remains dissatisfactory. On the one hand, it often lacks a precise ter-
minology, e.g. a clear differentiation of levels of abstraction. On the other hand, the graphical notation
itself hardly fulfils its promise to provide business people with an intuitive representation of business
processes: The symbols remain abstract, without any visualisation of business-related aspects. Borger
and Thalheim 2008) present a “framework” for the specification of business process modelling lan-
guages. It consists of a formal, rule-based meta language and its application to generic control struc-
tures of business processes. In a case study, the authors demonstrate its application to BPMN. While
this makes it more convenient to use than mere formal languages such as Petri nets or process alge-
bras, its emphasis is on the specification of the execution model, too — abstracting from specific busi-

ness-related characteristics.

None of the existing approaches fits exactly the purpose a process modelling language should serve
within the MEMO framework. Except for EPCs they are not specified through meta models, which
would make it cumbersome to integrate them with the MEMO modelling languages. At the same
time, EPCs are not a language to be conveniently integrated either, since there seems to be no compre-
hensive specification. A few excerpts of a corresponding meta model can be found in Scheer 2001).
However, they seem to serve mainly illustration purposes. At the same time, the specification the
ARIS toolset is based on is not available. Within MEMO, process modelling is part of the Organisation
Modelling Language (OrgML). It is primarily aimed at providing elaborate support for analysis and
design of action systems and corresponding information systems. Therefore, it emphasises the integra-
tion with relevant parts of an enterprise model such as required IT artefacts, business goals, organisa-
tional units etc. The specification is not aimed at specifying corresponding execution semantics. How-
ever, it should be sufficient for mapping respective business process models to representations that

are executable.

The specification of a domain-specific modelling language (DSML) is a demanding task. A DSML can
be an artefact of remarkable complexity. Often, it will be even more demanding that requirements are
difficult to analyse because the prospective users have not clear idea of what to expect from a DSML.
This is different with business process modelling, since there is remarkable experience with develop-
ing and using business process models. Nevertheless, the design of a business process modelling lan-
guage requires accounting for requirements. A corresponding requirements analysis has been pre-

sented in a previous report (Frank 2011b) that covered the scope of the entire OrgML, i.e. modelling of
2

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

organisation structure and processes. For many, reading the specification of a DSML is not exciting —
to say the least. Therefore, the first part of the report is focussed on descriptions of language concepts
that are illustrated with examples. It is divided in basic concepts and control flow concepts. The se-
cond part comprises the meta model. It can be omitted by readers who are more interested in using
the language than in building tools. The graphical notation is introduced on the fly with the illustra-
tion of the language concepts. An addition to that, a comprehensive representation of all notation ele-
ments is provided together with a selection of example models. The language specification presented
in this report does not cover the information flow within a business process. Information flow or in-
formation logistics is a field of remarkable complexity, if one wants to allow for elaborate models that.

Therefore, the specification will be extended with corresponding concepts in a separate report.

This report is not intended to serve as a mere handbook for guiding the use of the OrgML. Instead, it
documents the design of the language including the discussion of related challenges and design prob-
lems. Therefore, a preliminary graphical notation is used before the language itself is specified. Even
though it is in part very similar to the final notation, it should not be mistaken for the that. It serves to
illustrate concepts and related design issues as a foundation for the subsequent language specification.
Those readers who are interested in using the language only may want to skip chapters 2 to 4 and fo-
cus on the remaining chapters. Also, the meta model is required only for those readers who want to

get a deeper understanding of the language specification.

Basic Concepts

2 Basic Concepts

The main purposes, the MEMO OrgML should serve with respect to modelling business processes are
outlined in the requirements SR9 to SR28 in (Frank 2011b). Different from most approaches that are
aimed at a sound formal specification of process modelling languages, the MEMO OrgML is not pri-
marily focussed on the specification of process execution models. Instead, the emphasis is on various
types of analysis and design. Since MEMO business process models are also intended to serve as a
conceptual foundation for building process-oriented software, such as WEMS, they are supposed to
incorporate a sufficiently precise specification of their semantics in order to allow for transformations
into languages that are used for implementation purposes, e.g. workflow specification languages. An
example for such a transformation based on a previous version of the MEMO OrgML is presented in
Jung 2004). By default the language concepts serve to specify types, e.g. event types, subprocess types

etc. Note that we will often speak of events, subprocesses etc. without adding an explicit “type”.

To develop a business process modelling language, a definition of the term business process as the
one presented in Frank 2011c, p. 5) may serve as a starting point. However, it is not sufficient. A busi-
ness process is composed of processes. To differentiate these processes from the entire business pro-
cess, we call them subprocesses. An elementary subprocess is an elementary unit of work within a busi-
ness process, i.e. it is not supposed to be further decomposed. Subprocesses can be composed to ag-
gregate subprocesses. Subprocesses are arranged with respect to a certain flow of control that defines
the sequence of executing processes. A process can be described by its outcome, the resources it re-
quires, the actors that are responsible for it and the tasks it involves. To compose a set of subprocesses
to a business process, it has to be specified how their execution is synchronised. This requires a con-
ception of time — to express when a process will be started and what happens when it terminates. This
conception can be realised through the notion of an event and relationships between events that ex-
press their relative position on a common time axis. Furthermore, events can serve the purpose to no-
tify agents (systems or humans) that have subscribed to be informed about certain aspects of a busi-
ness process’ states or state changes. Exceptions are a special form of events. Different from events they
are not expected to occur on a regular base. They could be modelled as regular events. However, that
would not only increase the complexity of a model, it would also corrupt its comprehensibility by dis-

tracting the observer from the regular pattern of execution.

The analysis of concepts to model organisational structures showed that most of them cannot be di-
rectly represented as meta types (Frank 2011c). This is clearly different with the key concepts used for
process modelling. Figure 1 illustrates their use on various levels of abstraction. Apparently, the core
meta types “Process”, “Event” and “Exception” clearly fulfil the criteria referred to in modelling Rule
R2 (Frank 2011d).

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Process Event Exception

Meta Model (M) name: String name: String name: String
description: String description: String description: String
I
|] I
________________ e e I

: : |

Order Management Amount available ERP breakdown

Model (M4)

| |
| |

L
Instance (Mo) o1: Order Management e1: Amount available e1: ERP breakdown
started: 08-12-18; 10:33:10 44 units available occured at 08-12-18; 10:43:30

Figure 1: Key modelling concepts and corresponding levels of abstraction

To allow for a more elaborate analysis and construction of process models, more specific language
concepts are required — in other words: The vocabulary that is provided with the modelling language
needs to be extended. For this purpose, the key concepts “Subprocess”, “Event” and “Exception” are
differentiated into more specific concepts. This conceptual differentiation may result in further meta
types, i.e. in technical terms represented within the OrgML, or it may produce a classification schema
which serves to differentiate relevant shapes of the core terms. The following discussion of design
issues makes use of graphical notations for illustration purposes. Note that the respective symbol are

only in part the same as those that will finally be presented as the graphical notation of the language.

2.1 Process

The generic term “process” is at the core of the targeted DSML. It comprises entire business processes,

subprocesses and aggregate processes.

2.1.1 Business Process

Usually business process modelling is focussed on one business process type at a time only. While this
makes sense with respect to reducing complexity (and separation of concerns), it is not satisfactory, if
there are interdependencies between process types. These interdependencies concern resources, the
instances of various process types use (or compete for), events, exceptions, etc. Accounting for these
interrelationships fosters the overall integrity of the corresponding organisational system (e.g. integri-
ty of business rules, positions, roles etc.) and the information system (e.g. commonly used classes,
events, exceptions, exception handling etc.). Therefore, the OrgML includes the concept “Business
Process” and a corresponding symbol. A business process type is comprised of subprocesses, events
and a corresponding control flow. In addition to its internal structure, a business process type can be
characterised by associations to other business process types. Currently, they comprise two directed
and two undirected associations. A business process type may support another one or it may be a spe-
cial case of another one. Two business process types can be similar or they may compete. Note that
there is no special semantics of these association types defined. They only serve to document relation-
ships between business processes in order to foster transparency and integrity. If a business process
type is defined to be a special case of another business process type, there will usually be no need to
5

Basic Concepts

express that they are similar. However, there is no constraint that enforces the mutual exclusion of
these association types, since they may be based on different kinds of commonalities. The business

process map in Figure 2 illustrates the use of these associations.

:rﬂl}l
Procurement Order Management Group Incident Management

A

Y

Akquisition Order Management Group Complaint Management
B
——»[|€«—— competition —» special case of
P similarity —[%»% supports

Figure 2: Illustration of Associations between Business Process Types (preliminary notation)

2.1.2 Subprocess

Subprocesses can be differentiated with respect to the level of automation: “Manual Process”, “Com-
puter-Supported Process” and “Automated Process”. Note that the notion of an automated process
implies that it is triggered automatically, too — while a computer-supported process might be trig-
gered automatically or manually. The concept “Any Process” is used for those cases where one does
not know or does not want to care about the specific characteristics of a process. Furthermore, there is
the concept “External Process”. An external process is executed under the control and responsibility of
somebody outside of the organisation — which does not exclude that it takes place physically in the
organisation’s facilities. It may be an entire business process within the external organisation. Howev-
er, from the perspective of the local business process it is a subprocess. Since the two dimensions “lev-
el of automation” and “internal/external” are orthogonal, they can be combined to eight different
kinds of subprocesses. However, in most cases, it will not be advisable to account for the peculiarities
of an external process. Instead, one would usually take advantage of the abstraction that results from
encapsulating external processes. Table 1 shows the concepts together with the symbols used to visu-
alise them. There is no doubt that all these concepts satisfy the criteria proposed with Modelling Rule
R2 (Frank 2011d). Hence, they are suited as concepts of a modelling language. Note, however, that
does not necessarily mean to specify them as meta types: Firstly, a resulting concept may not corre-
spond to any term of the relevant technical terminology. Secondly, the resulting number of terms may
overburden prospective users. Thirdly, this “type” of a process may be changed during the life time of
6

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

a model. That could recommend using pseudo types which are differentiated by entity states (Model-
ling Rule R3, Frank 2011d). Also, it seems reasonable to assume that there are further specific con-
cepts which are used in certain domains, e.g. in the financial services sector or in health care. Hence, it

is important to provide for corresponding extension mechanisms.

Any Process represents process types which are not specified any further
Manual Process represents process types that are executed by humans without O
the support of computers I % |

Computer-Supported represents process types that are executed by humans that use 9

Process computers

Automated Process represents process types that are automated =
E]

Any External Process represents process types external agents are responsible for; m

note that this may be an entire business process type within

the organisation of the external agent.

Table 1: Different Types of Subprocesses (preliminary notation)

2.2 Event

The idea of an event is essential for dynamic abstractions. Events are are used to couple processes to a
more complex process: A process is triggered by an event and it produces or enables one or more
further events, which in turn may trigger further processes. Similar to “process”, the term “event” is
frequently used both in everyday’s language and in many technical terminologies. Therefore it is not
surprising that its meaning is vastly overloaded. At the same time, “event” is regarded as a key term
of philosophical ontology. However, philosophy has not produced a uniform conception of event
either. There is a plethora of considerations from different viewpoints, based on different ontological
traditions. Therefore, the ontological notions of event are characterised by a remarkable, sometimes
subtle diversity. They include questions such as “does an event have a temporal duration?”, “what is
the difference between state and event?”, “is there a categorial difference between objects and

events?” etc.

In the context of business process modelling we do not need a notion of event that satisfies ontological
requirements, since our modelling concepts are not intended to describe the world as it is, but to foster
abstractions of business processes that satisfy certain purposes. Nevertheless, the ambiguity of the
term recommends to thoroughly define a conception that is suitable for modelling business processes
with respect to relevant purposes. There is a multitude of different event types that may occur in
business processes. The question is, which ones are suited as concepts to be included in the modelling

language. To develop an answer, we will first look at a comprehensive — however, not complete —

Basic Concepts

taxonomy of events in the context of business process modelling. Subsequently, we need to decide

which of these concepts should be included in the modelling language.

221 A Generic Taxonomy of Events

In general, an event within a system — action system and/or information system — can be regarded as a
change of state. There are three generic kinds of change: A set of new objects can be created, the state
of a set of objects changes, or a set of objects is deleted. State may relate to the state of a particular
object, e.g. the state of the attribute “revenues” of an object of the class “Product”. It may also relate to
an aggretated value, e.g. the sum of all corresponding revenues. Furthermore, it may reflect a relation
between different states, e.g. “revenue A > revenue B”, or a function, e.g. “margin” which is calculated

from revenues and costs.

This preliminary conception of event would include information changes such as the modified content
of a database or the creation of a new file. It would also comprise physical objects such as parts or
products that were built, modified or disposed. From a materialist point of view, it would even
include decisions — which would be regarded as the state changes of the human brains that are
involved or that are affected. Furthermore, events can be generated through time, either points in time
or time periods. This seems to be not compliant with the definition suggested above: The progress of
time is independent of a system’s state — the implications of the theory of relativity are certainly not
relevant for our purpose. However, time can be regarded as a dimension that characterises a system:
A system at time to is different from the same system at time t1 — even it its state has not changed. A
good example for this assertion is the feature “age”. While the state of an object may not have changed

at first sight, the function “age” will deliver different values with progressing time.

This generic conception of event results in the meta taxonomy illustrated in Figure 3. Note that
“physical resource” comprises both physical objects such as a computer that was repaired (e.g. within
an incident management process) and humans (e.g. the enlistment of a new employee within a process
operated by a Human Resources department). “Action” on the other hand refers to human actions
that express change within the related human brains, e.g. the result of a decision, the approval of a
contract etc. An action may induce a change of corresponding information objects or physical

resources, but it does not have to.

Event
8.
[(=)
[0’}
@
o
o
~<
[@hange
& created Y
modified
[bject deleted Mime
physical resource point in time
information object within time interval

action

Figure 3: Generic meta taxonomy of events
8

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

V77

Since the three dimensions “object”, “change” and “time” are (largely) orthogonal, they could be com-
bined to 3x3x2=12 different generic kinds of events. Table 2 illustrated these resulting kinds of events

by examples. Note that the dimension “time” is used in a few examples only.

Information Resource Human Brain/Decision/Action

Physical Resource

new A new PC is installed. An invoice is created. A customer calls to give an
order.
An order is created. A customer calls to ask a
question that concerns a
product.
A new employee is A christmas card for a A department manager signs
enlisted. customer is created before a christmas card to a
Dec. 14, customer before Dec. 14,
New products are entered A customer buys a product
into the database. (new contract) before the
special price expires.
modified A PC hard drive is An order is modified. A customer calls to modify a
replaced within the previous order.
warranty period.
An employee is Prices of certain products A sales assistant confirms a
qualified for an ERP are changed. modified order.
system.

y A department confirms a
special price for a certain
customer.

A PC memory is The annual revenues of a A department denies a

extended. customer have exceeded a special price for a certain
certain value. customer.

deleted A PC is removed. An order is cancelled in A customer sends a fax to
time. cancel a previous order.
An invoice is cancelled.
An employee is laid off Completed orders are A customer calls and points
within the probation removed from the out to a mistake in an
period. database. invoice.

Table 2: Generic categories of events

Analysing the taxonomy of events illustrated in Table 2 leads to the following insights.

A materialist view is not appropriate. While it may be regarded as a convincing intellectual
construction, it does not correspond with conceptualisations prospective users are familiar
with (requirement Ul). Hence, instead of using the conception of changing brain states, the
language should offer concepts that represent the results of human actions more intuitively.

9

Basic Concepts

* For executing business processes, information is essential. On the one hand, business processes
require information, on the other hand, they produce information. Therefore, analysing how
information is handled within a business process is a pivotal task. This does not only include
information states and corresponding events, but also other aspects such as the representation
and delivery of information as well as awareness. Therefore, a further differentiation of events
that are related to these aspects is recommended.

* Those events that are produced by human action (or decisions) often correspond to changes of
information they target. Therefore, accounting for both kinds of events, e.g. the confirmation of
an order by a human agent, and the resulting change of an order would result in redundancy
or in ambiguous guidelines for using the corresponding concepts.

* While many human actions/decisions within a business process will result in information
(changes) that represent them, there are actions that may cause relevant events but that are not
necessarily documented. If, for instance, a customer calls for requesting information about
specific technical features of a product, this will not always be documented. However, when
such an event triggers a process, it is assumed that the request is somehow represented in the
information system — be it digital or non-digital.

* The manipulation of physical objects is usually not a subject of business processes. Therefore,
there is no need to offer specific concepts of events that correspond to certain changes of
physical objects. If handling physical objects is an issue in a business process, it seems
reasonable to assume that there is a corresponding information system that represents the
relevant states of the objects. Also, with the growing dissemination of micro transponders,
such as RFID chips, the difference between physical objects and the information objects that
represent them gets more and more blurred. Nevertheless, extending the language for other
domains, e.g. for modelling manufacturing processes, may recommend to include conceptions
of events that represent results of specific operations on physical resources.

e Often, temporal aspects will not be relevant for an event to occur. Therefore, it should not be
required to always account for them.

To summarise, the analysis of our first draft of a taxonomy of events suggests to widely fade out some
aspects, such as human actions/decisions (not the effects of these) or the manipulation of phyisical
objects. At the same time, the outstanding relevance of information handling recommends more
differentiated conceptions of events that are related to changes of information state. These additional

aspects should be relevant for performing the process.

2.2.2 Conceptualiation of Events

The main purpose of an event is to trigger the appropriate subsequent process. For analysing how
well an event is suited to fulfil this purpose, notification is essential. With respect to manual or semi-
automated processes that are not triggered automatically, this includes the question how the human
agent who is in charge of the subsequent process is notified. With respect to automated processes, it
may be important to know whether an event gets propagated to the software or whether the software
needs to check for relevant state changes. The refined taxonomy in Figure 4 shows a corresponding
classification of events. Since change is mainly related to information objects, there is no further
differentiation of the objects of change. In case a human actor is in charge of the subsequent process,

the notification about an event can be classified into synchronous (e.g. telephone call, face to face) or
10

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

asynchronous (e.g. fax, e-mail, mail). It does not make much sense to differentiate between face to face
and telephone calls. Both are synchronous notifications and usually it should be no problem to use the
one that is most appropriate. With respect to asychronous communication, it makes sense to
differentiate between electronic and traditional media: An incoming electronic message is clearly
easier to detect by a machine than a physical message. In the case of an incoming fax, it depends on
the technology used to receive the fax. In case of a fax machine, the message is delivered on traditional
media, i.e. paper. If a fax server is used, the fax can be regarded as an electronic message. Note that
distinguishing synchronous from asynchronous communication is sometimes not trivial. If, for
instance, a user is notified by a message in a pop-up window, this could be a synchronous message, if
the user perceives the message as soon as it is delivered. It could also result in a asynchronous
message, if the user realises the event only later. One could regard synchronous as a special case of
asynchronous communication, where the time for storing a message is zero. With a growing amount
of time a message is stored it gets more and more asynchronous. Having this in mind suggests to
make use of additional comments at least in cases where a message may be on the borderline between

synchronous and asynchronous.

With respect to software, an event can be published into the space (e.g. a queue) of an event
management system with a corresponding notification of those software components that subscribed
for this kind of event. An alternative option would be that an event is not published, but is instead
detected by polling the states of the related objects. For instance: A software system could check from
time to time whether a particular file or a certain database table had been changed. In both cases, the
software that receives a published event or detects an event by some polling procedure will be able to
trigger the subsequent process(es). Note that the notification of software and of human agents do not
exclude each other: It is possible that an event is propagated to some control software and that a
human being is informed about the event, too. If information state changed, one may not want to
bother with a further differentiation. Hence, “not specified” is to indicate that some change happened.
This generic form applies to the notification of software or human agents, too: Even if one does not
want or is not able to specify a certain kind of notification, it may still be relevant to express that there
is some kind of notification. This is different with the dimension “Time”: If the event is neither related
to a point in time, nor to a time interval, it does not make sense to assign a symbol that would express

something like “time matters”.

According to the taxonomy in Figure 4, events can be classified with respect to the generic type of
change of a related information object, to the notification mechanism that is used to communicate
them and to related temporal aspects. While all these different aspects can be combined into a
particular classification, they can also be used alone, if other aspects are not specified because they are

not relevant or no related information is available.

11

Basic Concepts

[Muman
I not specified
synchronous
asynchronous, traditional §
asynchronous, electronic ;»
Event notified about Boftware %
o [1 not specified S
a poll
3 publish
[al
g
[@hange
[not specified %
created
modified Fiime
deleted

point in time
within time interval

Figure 4: Revised taxonomy of events in the context of business processes

Applying the taxonomy in Figure 4 results in 4x4x3x2 = 96 different classes of events. While
differentiating these classes would promote the analysis of business processes, it is probably not
appropriate to represent each of them as a meta type. The resulting plethora of terms would certainly
not correspond to the technical language prospective users are familiar with — and would probably
overburden most of them. Therefore, the language users are provided with the classification criteria
only. It is up to them to what degree they want to make use of these criteria (requirement U3). The
graphical notation of the language supports this approach by allowing for combining the
corresponding symbols. Table 3 illustrates the construction of notation elements that serve to render
event types. Sometimes, it will not be clear whether an information change is to be characterised as the
creation of a new object or as the modification of an existing object. Take, for example, the event that
occurs when the revenues of a customer exceed a certain value. While this event corresponds to the
modification of an object, it also corresponds to the creation of an invoice object. Therefore, in cases of

ambiguity it is recommended to make use of additional comments.

Table 3 shows the different shapes of the basic event types.

=1 =y)
Change
not specified new modified deleted
O,
Time not specified
point in time time interval

12

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

L7 @
Notification: not specified =
Human asynchronous, asynchronous,
synchronous L .
traditional electronic
coe ((9)
Notification: not specified
Software
11
po publish

Table 3: Symbols to represent basic classes of events (preliminary)

To allow for a more differentiated graphical representations of events, these symbols can be combined
according to the taxonomy shown above. To avoid a plethora of redundant symbols, the following
rule applies to the construction of graphical symbols that represent event types. If an event type is
characterised by multiple dimensions, the primary symbol is selected in the following order:
information change, time, notification. The examples in Figure 5 illustrate this rule.

SF

primary symbol: notification
change tops time

Figure 5: Illustration of order for combining event symbols (preliminary)

Note that the classification shown in Table 3 covers two different aspects of an event: the act of change
that constitutes the event in the first place and its notification, which may generate a further event at a
later time. It is left to the modeller whether to do without any classification, to use only one aspect or
to combine both for classifying an event (as shown in Figure 5). However, a modeller should be aware
of the difference in order to avoid confusion. The event that is related to a notification mechanism is
meant to occur when the notification is received, not when it is sent. Sometimes, distinguishing these
two events will not be significant: if the mode of receiving a notification is implied by the mode of
sending it. If the mode of sending a notification allows for more than one mode of receiving it, it is
important to be aware of the above determination. With respect to current technology, the most
obvious example for such as case is sending a fax, which can be received either by a traditional fax
machine or a fax server. It may be regarded as important to distinguish these two modes of reception
since they have different implications on controlling a workflow and on information logistics. One
event can be transmitted by making use of more than one notification mechanism: If an event triggers
a concurrent split, it may be that the following concurrent processes are notified differently. For
instance: A process that results in a new state of some document produces an e-mail message to

communicate this event to some of the subsequent concurrent processes and a fax to communicate it

13

Basic Concepts

to other subsequent processes. However, only one event symbol can be used that applies to all
subsequent concurrent processes. Therefore, it is possible to use the event symbol that seems most
appropriate (in the above example this could be a symbol for electronic fax) and tag it as

“overloaded”, which means that other notification mechanisms are used as well (see Figure 6).

Figure 6: Marking an event as overloaded (preliminary)

Events that trigger a business process as well as those that terminate one are represented by special
symbols that can be combined with any other event symbol. As with intermediate events, it is possible
to use the starting and terminating symbols in a generic way without any further specification. Figure

7 shows a few examples of starting and terminating events.

STOP TART- TART- ST, STOP TART.
\VARVAR B BN A 7
\V4

Figure 7: Symbols to represent starting and terminating events (selection, preliminary)

The classification of events suggested above is still rather generic and does not account for more
specific but still common events in business processes such as, e.g., “signed”, “confirmed”, “denied”.
Currently, these types of events are not accounted for in the language. This is for two reasons: On the
one hand, it is assumed that events of this kind are not of remarkable relevance with respect to
analysing business processes (an assumption which may turn out to be inappropriate). On the other
hand, it would not be possible to build a complete list of more specific events. Therefore, more specific
events are not represented by corresponding language concepts. It is, however, possible to account for
them nevertheless: If one defines conventions for naming event types, it is possible to use names as

pseudo types.

One might consider excluding that only certain types of evens may trigger cetain process types. For
instance: Should it be possible for an event that can be detected by software only (e.g. through polling)
to start a manual process? While this may indicate a problem with a process model, we decided to not
add a respective constraint. Nevertheless, a tool that supports model analysis may point at such a

constellation.

2.3 Exception

An exception is an event that may occur during the execution of a business process. Different from

regular events that serve to trigger processes or to terminate a business process, an exception — as

suggested by the name — is not generated on a regular base. It is introduced for two reasons: Firstly, it

helps to reduce the complexity of business process models by leaving out cases that occur only very

rarely. In other words, it puts emphasis on how to accomplish the task without regarding possible, but

rare cases of disturbance. Secondly, the concept of an exception provides an abstraction that fosters
14

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

reuse and integrity. It demands for categorising/classifying exceptions and for defining specific
exception handling processes for each kind of exception. Hence, an exception handling process can be
reused in all processes where a certain kind of exception occurs. This does not only contribute to an
organisation’s consistency as it perceived by users, it also fosters its integrity with respect to changes:
If a exception handling process needs to be modified, this happens only once. Of course, these

advantages of exceptions are well known from software engineering.

Note that an exception is a modelling concept. Hence, only those exceptions that are anticipated as
such are accounted for. Also, there may be conceivable exceptions such as natural disasters that are
not represented in a model because the probability of their occurrence is regarded as too low for
bothering with them. To support a differentiated representation of exceptions, the OrgML should offer
meta types or classifications of exceptions that correspond to useful analysis or design objectives. One
important criterion for classifying exceptions is their effect: An exception is fatal, if it cause a process to
fail. In this case, exception handling is focused on terminating the process and rolling back the
corresponding information system. If an exception is a manageable disturbance, exception handling is
aimed at “repairing” and resuming the process. Orthogonol to the ultimate consequences of an
exception are its causes. There seem to be three different direct causes: technical failure, missing
resources or human action. Technical failure includes problems with software and hardware being
used in a process as well as breakdowns of power supplies or communication infrastructure. Missing
resources relate to missing human operators, missing machinery (e.g. required devices) or missing
space. There are multiple patterns of human action (or defaulted human action) that may generate a

process exception. To give a few examples:

* An actor decides to abandon the process.

e [t turns out that an actor had provided false data at an earlier stage of a process.

* An actor decides to cancel the process.
The classification that is suggested for the MEMO OrgML does not account for specific kinds of
actions or the related motives — because a plethora of those are conceivable. Instead, it allows for
classifying an exception as being caused by human action or request. Sometimes, it is not possible to
decide whether human action or a technical problem caused an exception — e.g. if an exception is
assigned to an external process — or there may be both a technical and a human cause and one does
not want to bother with treating them separately. For these cases, it is possible to make use of a
generic concept of exception. For handling exceptions appropriately, it is mandatory to detect them in
time. Therefore, analysing a business process should focus on the question how likely it is to detect a
possible exception: If there is a chance for an exception not to be detected in time, this should be a
reason to think about appropriate measures to foster the detection of the exception. Figure 8 shows a

corresponding taxonomy of exceptions.

15

Basic Concepts

Detection
" [not specified

\\1e6\° automatic

@ very likely

by chance

Exception

@
=4
@
-

[ffect

I not specified [Eause
attempt to resume [A not specified
cancellation time-out

human request/action
technical failure

missing resources

Figure 8: Taxonomy of exceptions

To reduce the amount of different symbols, we faded out “missing resources” as possible cause. If
required, in can be represented by “time-out” or “human action” — together with a self-descriptive
designation. The graphical symbols proposed to illustrate the resulting classes of exception are shown

in Table 4. Note that there are no special symbols for indicating that cause or detection are not specified.

Effect
not specified resume cancel
)
@ ﬂi 7
Cause
not specified time out human action | technical failure
8 i 8
Detection not specified
automatic very likely by chance

Table 4: Symbols to represent basic classes of exceptions (preliminary)

An exception type is assigned to a subprocess type. Figure 9 illustrates the representation of an excep-
tion type within a business process model. In case a process is assigned more than one exception, the

corresponding symbols should be stacked.

16

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

A1/

customer
cancels order

: Ei
process
order

Figure 9: Example for assigning an exception type to a process type (preliminary)

While (sub-) processes and events are essential to define how a business process is executed, they are
not sufficient. There is need for further concepts that allow for specifying the temporal (or causal) or-

der that determines the execution of a process. These concepts are usually referred to as control struc-
tures.

17

Control Flow

3 Control Flow

There are only a few basic control structures that are part of any process modelling language. The
term process can be used either for representing an entire business process or a sub process only. To
reduce this ambiguity, we use the term business process for the entire business process and the term
process for any process that is part of a business process. The specification of the corresponding lan-

guage concepts can be done only after all control structures have been presented.

A business process model can be regarded as a directed graph consisting of certain types of nodes (or
vertices). In the simplest case, there were only two types of nodes, process and event, which would
form a bipartite graph, i.e. a node of a certain type would never be connected to a further node of the
same type. Prominent examples of bipartite graphs are basic classes of Petri nets. While a modelling
language should be kept simple, the MEMO OrgML makes use of more than two types of nodes. This
is for two interrelated reasons. Firstly, additional types of nodes allow for building structures that are
more comprehensible for human observers. Secondly, they reduce the effort required for analysing a
business process model, e.g. to check whether a synchronisation of parallel paths of execution is syn-

tactically correct.

Before we start with the description of basic control structures, we will first define a few constraints

and features of OrgML business process models.

* A business process model starts with exactly one start event out of possibly many mutually ex-
clusive start events. It is not possible to define two concurrent start events. Justification: If there
were more than one concurrent start events, it would leave the business process model with
substantial ambiguity. After one of the start events had fired, it would not be defined whether
the remaining — concurrent — start events would still have to (or might) fire.

* A business process model is terminated by one or more mutually exclusive stop events. Justifi-
cation: If it was possible to terminate a business process with two or more concurrent events,
there would not be no clear indication, when a process actually terminates. In other words: A
terminating event would not necessarily terminate a process.

3.1 Basic Control Structures

There are a few basic concepts to define the control flow of a business process: sequence, branching

(alternative execution), parallel execution and synchronisation.

3.1.1 Sequence

A sequence represents the consecutive execution of a set of processes, which are interlinked by events

— see example in Figure 10.

Abstract syntax: A sequence consists of event types and process types. Each event type produces either
none (in case of a terminal event) or one process type. Each process type produces exactly one event
type.

18

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Semantics: Only after a process was terminated, the subsequent event will be generated, which in turn
is the prerequisite for starting the next process. As far as synchronisation is concerned, it is not neces-
sary that the termination of a process and the occurrence of the event it produces happen at the same
time. For instance: A process may be terminated, but the subsequent event will be generated only after
10 more minutes. Accordingly, an event does not have to occur at the same time a subsequent process

starts.

products plan logistics delivery create invoice invoice
available approved created

Figure 10: Illustration of sequence

3.1.2 Exclusive Choice (Branching)

An exclusive choice indicates that a business process is split in to or more alternative branches of exe-
cution. The actual path of execution is selected during run time by evaluating a condition that is used
to control the branching. Note that only one of the possible branches can be selected (exclusive OR).
The exclusive choice is represented by a set of mutually alternative events. While the actual meaning
of an event cannot be checked formally, it is assumed that the events that form an exclusive choice
cover all possible (relevant) events at this point. If, e.g., an exclusive choice produces two events E1
and Ez, then E1 equals non Ez. In addition to events, an explicit decision can be added. This can be ei-
ther a comment or a (formal) expression that can be evaluated to either true or false (in the case of an
exclusive choice with two alternatives). The language used to define such an expression will be intro-
duced only later, because it needs to refer to the context of a business process, e.g. to resources, infor-
mation etc. For analysing the economics of a business process it is important to know, whether the
decision the branching is based on is done automatically or by a human. In the latter case, it can be
differentiated between decisions that are based on fairly clear rules and those that are more dependent

on human expertise. The corresponding symbols are depicted in Table 5.

@ decision by human

@ decision by human, clear
rules

automated decision
O not specified

Table 5: Symbols to represent types of branching decisions (preliminary)

19

Control Flow

Note that especially in case of an automated decision it should be possible to represent a formal ex-
pression that can be evaluated to calculate the decision. For analysing a business process type — e.g.
with respect to the required resources or to costs or time consumption — it may be useful to account for
the relative frequency — or probability — that is characteristic for the execution of each alternative pro-
duced by an exclusive choice. If corresponding numbers are available, they can be assigned to each

alternative (see example in Figure 11).

Abstract syntax: An exclusive choice split is associated with a process that produces it. Each of the n
alternative paths that constitute the possible alternatives starts with an event which is associated to the
exclusive choice split. With respect to its syntax, each alternative path is treated like an independent
business process, i.e. it may contain any control structure that is defined for a business process, e.g.
further exclusive choices or parallel paths of execution. An exclusive choice can be assigned an expres-

sion that serves to characterise the decision. Each alternative path can be assigned a relative frequency

Semantics: During the execution of a business process, one and only one of the alternative paths pro-
duced by a branching can be executed (XOR). The branching condition should be specified in a way
that there will be always one alternative that fits the decision criteria. Otherwise it would be possible
for processes to get stuck in a deadlock. Note that this semantic constraint cannot always be formal-
ised — and hence not enforced by a tool — because it may require an evaluation of the relevant action
system. In the current version of the language, the expression that can be assigned to an exclusive
choice is regarded as a comment that serves to describe the underlying decision. In the case of a two
way branching it could be interpreted as a Boolean expression. The sum of the relative frequencies —

or probabilities — that are assigned to the alternative branches of an exclusive choice must be 1.

exclusive choice

robabili
(made by human actor) p ty
0,3
replacement replace box box replaced
replacement required
advised?
service hanglyse
request ardware 07
received exclusive choice
comment repair required repair box box repaired

Figure 11: Example representation of two way branching

While the example in Figure 11 shows a simple exclusive choice with two alternatives only, the same

concepts can be used for representing multiple selections.

3.1.3 Concurrency

If two or more parts of a business process can be executed independently, one speaks of concurrent or
parallel execution. Figure 12 gives an example of splitting a business process into three paths of paral-

lel execution. Concurrency emphasises independent execution, which include the possibility of simul-
20

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

taneous execution. Note that we do not differentiate between concurrent and simultaneous execution

because we assume that usually there will be no need for enforcing true simultaneous execution.

parallelisation

calculate
logistics costs

calculate

request for check request labour costs

offer received credibility approved

calculate
materials costs

Figure 12: Representation of parallel execution

Abstract syntax: Concurrent paths of execution are started with a concurrency split. A concurrency
split is associated to the event that triggers the various concurrent paths of execution. Each path of
execution starts with the event that precedes the concurrent split. Each path of execution is treated like

any path of execution, i.e. it may contain exclusive choices, further concurrent paths etc.

Semantics: Parallel paths are executed independently. They will often be executed simultaneously. But

this is not mandatory.

3.14 Synchronisation of concurrent paths of execution

Concurrency is motivated by the quest for faster throughput. For this purpose a complex task is di-
vided into a set of less complex tasks which can be performed in parallel. Usually, this division of la-
bour implies to somehow integrate the produced results or — in other words — to synchronise the cor-
responding paths of execution. In order to develop an appropriate conception of synchronisation, we

shall first look at possible business process structures without synchronisation.

The following statements characterise the structure and the constraints that apply to synchronising
concurrent parts of a business process that does not include any synchronised parts. They are the
foundation for the subsequent description of the abstract syntax and semantics. Some of them describe
constraints that can be checked ad-hoc. Ad-hoc consistency comprises permissible connections of two
symbols independent at a certain point in time, while ex-post consistency comprises checking for syn-
tactical correctness of an entire graph (process model). For instance: At no point in time it is possible
to connect to subprocess symbols (neither ad-hoc nor ex-post consistent). It is possible to add a con-
currency split (“fork”) to an event without hurting ad-hoc consistency. However, a fork without a cor-

responding synchroniser would hurt ex post consistency.

1. The control structure of a business process model can be regarded as a directed tree. The
tree consists of four types of nodes: subprocesses, events, alternative choice splits (“branch-
ings”), concurrency splits (“forks”) and synchronisers.

21

Control Flow

or ok LD

o ©® N

11.

12.

13.

14.

15.

16.

17.

18.
19.

The root node of a business process model is a start event.
A business process model includes one to n terminal events.
A terminal event does not trigger any further steps.

Each event other than a terminal event can produce one subsequent subprocess (sequence),
a fork, or one or more synchronisers.

A process can result in one event (sequence) or in an alternative choice split.
An alternative choice split in turn produces n mutually exclusive events.
A concurrency split results in n independent (concurrent) processes.

Each node can be the root node of a further tree.

. All (sub) trees that are produced by a concurrency split are called concurrent trees. This in-

cludes further subtrees that are produced by further concurrency splits. If, e.g., a concur-
rency split produced two subtrees t1 and t2 and t1 produces a further concurrency split
which results in the subtrees tia and ti, then tia and tiv are concurrent to te.

The (sub) trees that are produced by an alternative choice split are called alternative trees.
This includes further subtrees that are produced by an alternative choice split. If, e.g., an al-
ternative choice split produced two subtrees t1 and t2 and t1 produces a further alternative
choice split which results in the subtrees tia and tiv, then tia and ti are alternative to to.

If two trees t1 and t2 are concurrent and t2 is split into two alternative trees tz. and tx, then
t2a and tov are potentially concurrent to ti, i.e. alternative trees within two concurrent trees are
potentially concurrent. In the simplest case, an alternative tree consists of a (final) event on-
ly. The final events of potentially concurrent trees are called potentially concurrent events.
The final events of concurrent trees are called concurrent events.

Two trees that are concurrent can be synchronised by associating their final concurrent
events with a synchroniser.

A synchroniser is either conjunctional, i.e. it is fired only after all synchronised events have
fired, or disjunctional. In the latter case, the synchroniser is fired as soon as the first of the
synchronised events has fired.

Two potentially concurrent events can be synchronised by associating their final potential-
ly concurrent events with a synchroniser.

Two trees that are not concurrent or potentially concurrent cannot be synchronised. Two
alternative trees are not concurrent.

Two synchronisers si and sz are mutually exclusive, if they the occurrence of si excludes the
possibility that s may occur, too. Hence, they are not concurrent.

Two synchronisers are concurrent, if they may occur concurrently.

The synchronisation of potentially concurrent trees must finally result in more than one
synchroniser. Otherwise, there would be a deadlock in the case of a conjunctional synchro-
niser — an event cannot occur together with the event that represents its negation. In the
case of only one disjunctional synchroniser, the previous alternative choices would be
meaningless, which would result in a non-sense flow of control.

22

20.

21.

22.

23.

24.

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

The two or more synchronisers of potentially concurrent trees must clearly represent con-
current events or alternative choices. Otherwise, an ambiguous situation would result: two
synchronisers could fire concurrently, but also mutually exclusive (see examples in Figure
19).

The set of synchronisers should be complete in the sense that all constellations of events are
accounted for. If that was not the case, certain constellations could not be synchronised,
which would imply a deadlock. The two conjunctional synchronisers used in the example
in Figure 18 would not fire, if one of the associated events did not fire — which of course
might happen. For an exception of this rule, see synchronisation exception in 4.

Only concurrent synchronisers can be further synchronised. They are synchronised like
concurrent events.

Mutually exclusive synchronisers correspond to an exclusive choice. Each one of a set of
mutually exclusive synchronisers produces a sequential path of execution, which are mu-
tually exclusive.

If two concurrent trees are synchronised, the resulting structure is a directed graph that is
terminated by synchronisers. With respect to further synchronisations, it can be treated as a
tree, the final events of which are — in part — synchronisers.

The example, incomplete business process model in Figure 13 illustrates the statements above. Trees ti

and t are alternative trees. All subtrees of t1 and of t: are alternative trees, too (9). Hence, a subtree of

t1 must not be synchronised with a subtree of t2 (14). The same applies to the alternative trees t221and

t221. The trees t2221and t2222 are concurrent, their final events are potentially concurrent (10). Hence,

they can be synchronised, e.g. by synchronising event E5 and E7 as well as E6 and E8. The two sub-

trees of t21, resulting in the events E0 and E1, are concurrent. Therefore, they can be synchronised.

While t21 and t22 are concurrent, the two alternative trees t221and t222 are potentially concurrent to t2a

(10). Hence, the concurrent subtrees of t222, t2221and t2222, are potentially concurrent to t21 (10). This

implies that they can be synchronised with t222, e.g. by synchronising E5 and E2. Figure 14 shows an

example of conjunctional synchronisation.

23

Control Flow

—‘ Tree ti1
—‘ Tree t;
:—‘ Tree ti,
EO
14
ND,
L‘ Tree t,
—‘ Tree t1
E1
calculate transportation
SE— — costs
calculate E2
O Ioglstlcs costs
. 10
N too high
calculate insurance costs &
Tree t, Moot |
VA—— _ = L=] E3
-
off-the-shelf calculate costs too high 1
\ E4, too high
identify product type K
ol
Mree to. calculate production
Tree t22 costs
T —

custom-made

calculate design costs

E7,
AN
4)0 high
calculate risk E8,
k

Figure 13: Illustration of synchronisation rules

Abstract syntax: The final events (or synchronisers) of concurrent or potentially concurrent trees (or
graphs) are associated with a synchroniser, which can either be conjunctional or disjunctional. Each
synchroniser is associated with two to many final events (synchronisers) of concurrent trees (graphs).
The final events must not be part of trees that originate in the same concurrency split, i.e. that are on
the same level of parallelisation. It is only required that they are concurrent (see example in Figure 15).
A synchroniser must not be associated with two events that are not concurrent. Two or more synchro-
nisers can be associated with a further synchroniser (see example in Figure 16 which is equivalent to

the example in Figure 15), if they are concurrent.

Semantics: Conjunctional synchronisation means that the process that is triggered by the synchroniser
is started only after all parallel paths have terminated. disjunctional synchronisation means that the
subsequent process starts after the first of the parallel processes has terminated. In the latter case it is
assumed — but not required — that all other processes will be terminated when the synchronisation
occurs. Note, however, that this is not necessarily a case of an exclusive OR (XOR). Instead, it is possi-
ble that more than one path terminate at the same time. A synchroniser can be interpreted as an event
that depends on the occurrence of other events. The set of synchronisers used for a set of concurrent
trees (graphs) must be consistent, i.e. it must not be possible that they produce alternative choices and
concurrent paths. Also, it must not allow for deadlocks, i.e. for constellations of events that would not

fire any synchroniser.

24

request for
offer received

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

parallelisation

check
credibility

request
approved

calculate
logistics costs

logistics costs
calculated

conjunctional
synchronizer

calculate
labour costs

labour costs
calculated

calculate
materials costs

materials costs

calculated

&

compile offer offer created

Figure 14: Conjunctional synchronisation of parallel paths

calculate

logistics costs
logistics costs

calculated

evaluate
logistics costs

logistics costs
evaluated

AND,

" calculate labour costs compile offer
reques labour costs calculated
approved
calculate materials costs ~ evaluate materials costs
materials costs calculated ~ materials costs evaluated
Figure 15: Conjunctional synchronisation of different levels of parallelisation
calculate logistics costs evaluate logistics costs
logistics costs calculated logistics costs evaluated @
calculate I <
abour costs
request labour costs calculated W
approved .
compile offer

materials costs

calculate materials costs

calculated

evaluate

materials costs

materials costs
evaluated

Figure 16: Synchronisation of synchronised parallel paths

Concurrent paths of execution can be synchronised by overlapping conjunctional and disjunctional
compositions of terminating events. In this case, the processes that are triggered by the synchronisers

represent alternative paths of execution. The corresponding notation shown in Figure 17 does not re-

25

Control Flow

veal the exclusive choice at first sight. However, analysing the both synchronisers shows that they

represent mutually exclusive sets of events.

logistics costs
too high

calculate
logistics costs
logistics costs

ok
——ap—P——
labour costs compile offer
L =1 too high
e o check request Iagilcufégts &
offer received credibility approved ur)
labour costs compile

ok refusal

disjunctional

synchronizer

material costs
too high

calculate
material costs

material costs
ok

Figure 17: Combination of conjunctional and disjunctional synchronisers

Synchronisation does not only require accounting for syntactical rules. It also requires caring for con-
sistent semantics. The example in Figure 18 shows an irregular synchronisation, because it may result

in a deadlock, where none of the two synchronisers fires (see statement 19 above).

26

request for
offer received

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

logistics costs
too high

calculate
logistics costs
logistics costs
ok

X

Semantics!
labour costs compile offer \'w
N L] too high
/ request
check request |aﬁﬂﬁglfg§rs e G—— processed
credibilty approved labour costs compile

ok

material costs
too high

calculate
material costs
material costs
ok

refusal

Figure 18: Irregular combination of conjunctional synchronisers

Figure 19 shows an irregular case of synchronisation, too. It may result in two mutually exclusive syn-

chronisations. If, e.g., all events that are synchronised by one synchroniser fire, while the remaining

events — which are synchronised by the other synchroniser — do not fire, then both OR synchronisa-

tions represent two non-overlapping, mutually exclusive sets. If, however, there is one event in both

sets of synchronised events that fires, then both synchronisers fire concurrently. Hence, this kind of

synchronisation would describe two possible flows of control that are contradictory (see statement 18

above). Note that mergers, which are used to merge to alternative paths of execution will be intro-
duced in 3.2.1.

27

Control Flow

logistics costs

too high
calculate 7]
logistics costs ®
logistics costs
ok Semantics!

-
labour costs compile offer \’W
A A too high

/ request
calculate O;R processed

request for check request labour costs
offer received credibility approved labour costs compile
ok refusal
material costs
too high

calculate
material costs

material costs
ok

Figure 19: Irregular combination of disjunctional synchronisers

3.2 Modelling Shortcuts

To foster ease of use, the specification of a language should emphasise lean design, i.e. it should avoid
conceptual redundancy. However, sometimes conceptual redundancy may promote ease of use and
modelling productivity. This is the case, if frequent patterns of basic modelling concepts are replaced
by higher level conceptual “shortcuts” that represent the same semantics. Shortcuts also foster a high-
er level of abstraction and can contribute to model integrity, because users do not have to bother with
constructing models from lower level concepts. These shortcuts include merging of alternative
branches of execution and iterations. We also subsume aggregations of processes under shortcuts.
Note, however, that aggregations of processes are not exactly shortcuts because they are not semanti-

cally equivalent to the processes they represent in the sense that they lack information.

3.2.1 Merging of Alternative Branches

An alternative choice splits the flow of control into two or more mutually exclusive paths of execution.
Sometimes these paths will eventually produce the same events, which in turn trigger the same sub-
sequent processes. In order to avoid the visual complexity produced by multiple copies of identical
flows of control, it is possible to merge alternative paths into one common path of control. This is ac-
complished by using the concept of a merger. The syntax of a merge is simple: the representation of
two alternative trees (graphs) that are identical can be replaced by one instance of the tree. The two
nodes, the identical trees start with, are the starting node of the merged tree. A starting node can be an

event, a process, an exclusive choice split or a concurrency split. Figure 20 shows an example where

28

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

the two identical trees start with the same event. Merging is sometimes referred to as synchronisation

of alternative branches. This, however, is misleading: It is simply an alternative — less extensive — rep-

resentation.
replacement replace box system works create invoice case closed
replacement required
advised?
analyse
hardware
repair required repair box system works create invoice case closed
merger
replacement replace box
replacement required MMJ
advised?
anase system works create invoice case closed
hardware
repair required repair box

Figure 20: Merging of two alternative paths, starting with common event

off-the-shelf
request for identify
offer received product type
custom-made
off-the-shelf
request for identify
offer received product type

custom-made

determine
acquisition costs

calculate
production costs

determine
acquisition costs

calculate
production costs

acquisition costs
determined

production costs
calculated

acquisition costs
determined

production costs
calculated

create offer

create offer

Jm—

create offer

Figure 21: Merging of two alternative paths, starting with common process

29

Control Flow

We assume that in most cases an event makes more sense. It seems more likely that two different pro-
cesses trigger the same event than that two different events trigger the same process. However, since
merging does not change the semantics of a business process model, we also allow for merged paths
starting with a common process. The example in Figure 21 illustrates that it is advised to thoroughly

check whether the starting process is really the same in both alternative paths.

Figure 22 shows an example where the first node of the merged trees is an exclusive choice.

create invoice
system works

replace box
replacement P system still not perform further
replacement required ok diagnosis

advised?

analyse
hardware
create invoice
system works
repair required repair box
system still not perform further
ok diagnosis
replacement replace box ctem works create invoice
replacement required 4
advised?
analyse
hardware
system still not perform further
ok diagnosis

repair required repair box

Figure 22: Merging two exclusive choices

Figure 23 illustrates that according to the general rule that defines merging, it is also possible to par-
tially merge two alternative exclusive choices. However, while this is syntactically correct and the se-
mantics are unambiguous, it should be thoroughly considered whether it is appropriate using this

kind of merge, since it might be perceived as confusing.

30

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

create invoice

system works

replace box - ')
| . replacgmsnt P peripherals perform diagnosis
regdavciseg:ﬁn require: not ok of peripherals

analyse
hardware
create invoice
system works
repair required repair box
system still not perform externded
ok diagnosis
peripherals perform diagnosis
not ok of peripherals
replacement replace box
replacement required
advised? ANy A
analyse create invoice
hardware system works

repair required repair box
system still not perform externded
ok diagnosis

Figure 23: Partial merging of two alternative exclusive choices

Abstract syntax: Merging results in replacing n identical alternative trees (graphs) by one instance of
the tree (graph). The identical trees may start with a common node, which may be an event, a process,
an exclusive choice split or a concurrency split. To indicate the start of a merge, a merger is associated

to the starting node. It is not permitted to merge paths that are part of concurrent trees.

Semantics: Merging alternative paths of execution is not a control structure. It simply allows for repre-

senting multiple identical paths of execution by one path only.

3.2.2 Aggregate Subprocess

The complexity of large business process models may compromise their comprehensibility because
they overcharge users with too much detail. Furthermore, it may be the case that a representation me-
dium, e.g. a computer screen, does not allow for presenting an entire business process model in a
readable size. To cope with this problem it is a common approach to make use of composition and

decomposition. Instead of composition we speak of aggregation: It is possible to aggregate a set of

31

Control Flow

processes into an aggregate process. While an aggregation of this kind is mainly a replacement of a
number of symbols by one, it nevertheless requires some considerations with respect to its syntax. On
the one hand, it needs to be defined how a sequence of subprocesses can be grouped into an aggregate
process. Second, there need to be guidelines for how to aggregate the features (e.g. level of

automation, associations to organisational units and resources) of the respective subprocesses.

An aggregate process comprises a sequence of subprocesses. It is triggered by the event that triggers
the first subprocess and terminates with the events that result from the final subprocess. The sequence
may comprise completed (synchronised) parallel executions (see Figure 26). It may als include
branchings — either as an outcome of the final subprocess or branchings that have been merged to a
common sequence. An aggregate process cannot be assigned a type (level of automation,
internal/external), nor can it be assigned organisational units or other resources. This is for two
interrelated reasons. An aggregate process does not have a type on its own. Its semantics depends
entirely on the subprocesses it is comprised of. Therefore, it is not appropriate to explicitly assign a
type. Secondly, the subprocesses that form an aggregate process may be of different types. In this case,
it would not be possible to derive an appropriate “type” of the aggregate process. In a particular
implementation, one may decide that the modelling tool assigns a type in cases where all subprocesses
share the same time. The same holds for resources that are assigned to the included subprocesses.

Figure 24 to Figure 27 illustrate the rules for building valid aggregate processes.

>
- -~ ~ . .
products ~ Manage order ~ _ invoice
_available Ereat\ed\
-~ - -~ ~
-~ =~ ~
products plan logistics delivery create invoice invoice
available approved created

Figure 24: Aggregated process as replacement of sequence

32

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

box replaced

|
.
[
7 N
7 N
service .~ Mmanage repair "~
request request N
. ~N
received ~
7 ~N
g N .
7 box repaired
7 ~N
7 ~N
7 ~N
replacement replace box box replaced
| required
service hanglyse
request ElfeiEl S S
received
repair required repair box box repaired

Figure 25: Representation of branching processes

>
: _\
] .
- - te offi o~
~
request” Create orrer offer created
~
approved N
P ~
7 - B h =~
_ ~
P ~
7 - =
calculate logistics costs
logistics costs calculated
X QND |
approved calculated
calculate materials costs
materials costs calculated

Figure 26: Replacement of parallel paths

Abstract syntax: A set of processes can be composed into an aggregated process only, if the comprised

processes have one common starting event and one common terminating event or a common set of

mutually alternative terminating events (exclusive choice). Hence, it is not permitted for an aggregat-

ed process to represent a set of processes that result in events which are part of concurrent paths of

execution.

33

Control Flow

Semantics: The semantics of an aggregated process is simple: It is a placeholder for a part of a business

process.

Figure 27 shows an example of an aggregated process that does not conform to the syntactical con-

straints because it does not end in one event or a set of mutually exclusive events.

o
—
| I —

request calculate costs costs

approved ® calculated

calculate logistics costs

logistics costs calculated
+ AND
N calculate labour costs compile offer
reques labour costs

approved calculated

calculate materials costs
materials costs calculated

Figure 27: Example of prohibited use of aggregated process

3.2.3 Iteration

It seems that the language concepts introduced so far allow for expressing that a particular part of a
business process is executed more than once in a sequential order. After the final process of the part
that is subject of repetition, an exclusive choice could represent whether to go back and repeat or to

continue with the subsequent process. Figure 28 shows a corresponding representation of an iteration.

client not
— satisfied
broker search
appointment apartment [
received

client satisfied prepare
contract

Figure 28: Representation of an iteration without specific concepts

However, this approach has a number of disadvantages. Firstly, the construction shown in Figure 28

would allow for “repeat until” control logic only. “While” and “n-times” control logic would require

34

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

further concepts. Secondly, there is a syntactical problem. Normally, a process type is triggered by one
and only one event type. If an iteration would be represented as shown in Figure 28, this rule would
have to be relaxed — resulting in a remarkable challenge to validate syntactical correctness: If a process
type is associated with more than one preceding event, it would be required to check whether the first
occurrences of the corresponding events actually happen before or after the process type. This effort
would be even higher in the case of nested iterations. The example in Figure 29 illustrates the risk of
confusing control structures, which is well known from “go to” statements in programming. Thirdly,
it is suited to cause semantic confusion. Usually, an event type that is produced by a process type in-
dicates that a corresponding event occurs after the corresponding process. In the case of an iteration,
instances of the event type could both occur before and after instances of the process type. Fourthly —
related to the first problem — it would imply a bigger effort to identify iterations within a business

process. Hence, it would be more challenging to support corresponding functions within a tool.

client not

satisfied
broker search contract failed
appointment apartment [
received

client satisfied prepare
contract

contract
signed

Figure 29: Representation of nested iterations without specific concepts

For these reasons, the OrgML provides specific language concepts for representing iterations. “Itera-
tion Start” serves to indicate the beginning of that part of a business process that is subject of a repeti-

tion. We call this part iteration body. “Iteration End” is used to define the end of an iteration body.

There are three kinds of control logics to define the conditions that specify an iteration. To enable
“while” control logic the language provides a corresponding symbol that is associated with a guard-
ing condition. This symbol represents the iteration start. The guarding condition corresponds to the
event that precedes the iteration start symbol. A further symbol is used to depict the iteration end.
Note that it is not possible to combine events to a more complex condition. If this is required, it would
be necessary to represent this complex condition by one event. A “repeat until” loop is represented by
using a symbol to depict the iteration start and an “until” symbol that represents the iteration end. The
terminating condition is represented by a set of mutually exclusive events that may result from the
iteration. The same structure is used for realising “n-times” control logics. In this case, the “until”
symbol is replaced by a symbol that shows a number which indicates the number of iterations. This
number may be represented by a constant or — more likely — by referring to some variable which could
e.g. be provided by a service of an associated class diagram. Figure 30 shows an example of an itera-

tion that is controlled by “repeat until” logics. While the example is restricted to one process that is
35

Control Flow

repeated, it is possible to define an iteration for any part of a business process — provided certain syn-

tactical rules are not hurt (see below).

[m S until o
broker search client satisfied
appointment apartment
received

Figure 30: Example of an iteration with “repeat until” logics

An iteration may be terminated alternatively by more than one event. This can be expressed by using
an exclusive choice subsequent to the end of an iteration. Figure 31 illustrates this for a further “repeat
until” and a “n-times” iteration. We assume that there is no need for “n-times” control structures that
use increments different than one.

|\\

Lrepeat unti

iteration start control logic
S I I
W = client
ol — T satisfied
broker search
appointment apartment
received
contract
expired
,N-times"
control logic
I— __________ 1 lient satisfied
et client satisfie
i -0
broker search
appointment apartment !
received number of
iterations client not
satisfied

Figure 31: Examples of multiple alternative events following an iteration

The example in Figure 32 illustrates the syntax of “while” control structures. If the guarding condition
if defined as a logical conjunction, all included conditions should be represented separately at the end
of the iteration — because each one of them could terminate the iteration. Therefore, it should be de-
fined what is supposed to happen in any case. To foster integrity, a modelling tool could allow for

generating the guarding condition from negations of the conditions that define the subsequent events.

36

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

»while®
control logic iteration end
r—-F - - - —-———— 1
o I/ client satisfied
M — —— —=
search
customer NOT
satisfied AND 2Partment @
contract NOT
expired contract

expired

Figure 32: Example of a “while” control structure

|
| :’ __________________________ | [
| &3 &3
LN — m— m——
search) i _ o prepare rental
broker apartment appropriate show client client satisfied agreement rental
appointment apartment agreement
received found prepared
Q .
______________ e
r | | '
J v Yy &
- —\ /S o— —
search - i repare rental
broker apartment @ppropriate show client dlient satisfied " gareement rental
appointment apartment agreement
received found prepared

Figure 33: Nested Iterations

Iterations may include alternative branches and parallel paths of execution. This implies additional
syntactical constraints. For parallel paths of execution the rules are fairly straightforward. A parallel
part of a business process needs to be completely embedded into an iteration body, i.e. it needs to be
synchronised before the end of the iteration body. Figure 34 shows one example that violates this rule

as well as one correct representation.

37

Control Flow

calculate
logistics costs

logistics costs
calculated

&

¥y _ N\ L] o —i—
. calculate compile offer all offers
creation of select request request labour costs labour costs p Croatod
offers started from mailbox approved calculated
calculate materials costs
materials costs calculated
® calculate logistics costs
logistics costs calculated
5 1
M G
-— — T o
) calculate compile offer all offers
creation of select request request labour costs labour costs i created
offers started from mailbox approved calculated
calculate

materials costs

materials costs
calculated

Figure 34: Parallel paths of execution within an iteration body

The representation of iterations that include exclusive choices is more challenging. While correspond-
ing control structures are well known from program design — and are nicely supported e.g. by struc-
tograms — defining a corresponding representation for business processes recommends accounting for
the fact that prospective users may not be as familiar with algorithmic structures as programmers.
Therefore, the notation should emphasise comprehensibility and integrity. In general, the branches of
an exclusive choice that starts within an iteration body should be merged before the iteration end. This

rule can be applied for constructing nested iterations, too. Figure 35 shows a corresponding example.

38

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

rental
agreement
prepared

|

[

|

|

|

N \‘I, & client prepare rental
— - Until | satisfied ~ agreement

search

broker
apartment

appointment

received S contract

" consult with expired
client found -
client
apartment
himself

client
refused

Figure 35: Nested iteration with branching

However, if one of the branches does not include a process, merging becomes a syntactical challenge.
Modifying the above example we assume a business process where a broker is searching for an
apartment. He continues searching until the client is satisfied or the contract he has with the client
expires. If the client is satisfied with an apartment the broker prepares the rental agreement with the
landlord. If the contract is subsequently concluded, the process terminates. Otherwise, it starts all over
again with searching for an apartment. Figure 36 shows a possible representation that is, however,
syntactically wrong. The branch that consists of one event only is not clearly included in the surround-

ing iteration.

rental
agreement
prepared

\L & client prepare rental
- .- — el satisfied ~ agreement

appointment
received

brok search @
roker apartment
contract

contract expired
expired

Figure 36: Syntactically wrong representation of nested iteration

Figure 37 shows the correct representation of the example. It includes a merger. However, it is not
permitted to merge an event and a process. Therefore, a different concept is required. It is indicated by
the dotted line that connects the event to the merger symbol. The dotted line serves to represent an

“empty process” that is part of a merger.

39

Control Flow

rental
: agreement
signed
: — — 9
| « S client prepare rental
/A A - o Until | satisfied ~ agreement

brok search ®
roker apartment

appointment

received
contract contract
expired

expired

Figure 37: Correct representation of nested iteration

Note that the model in Figure 37 implies a semantic constraint: The event “contract expires” which
terminates the inside iteration must also be part of the disjunction that terminates the outside itera-

tion. Otherwise, it would be possible for the iteration not to terminate.

Abstract syntax: The beginning and the end of an iteration are defined by an iteration start and an itera-
tion end respectively. An iteration start is preceded by exactly one event, while an iteration end is suc-
ceeded by one event or a set of mutually exclusive (XOR) events. Both, iteration start and iteration end
must be part of the same overall path of execution, i.e. alternative and concurrent paths of execution
must be completely and not just partly included in the iteration body. In the case of alternative
branches this implies that an iteration body that starts before the branching must not be terminated
within one of the branches, but only after these have been merged. If a branch does not include a pro-
cess, it needs to be merged anyway. This is accomplished by a special kind of association between the
event and the merger. There are three kinds of logics that serve to control iterations. A “while” struc-
ture is represented by a corresponding concept that acts as the iteration starts and it associated with
the iteration end. A “repeat until” structure is represented by a corresponding concept that acts as the
iteration end — and is associated with the iteration start. A “n-times” structure is represented like a
“repeat until” structure, with a number that indicates the number of iterations. The number can be

represented either by a constant or by a reference.

Semantics: The iteration body is repeatedly executed. The number of repetitions depends on the condi-
tion defined in the control structure. If the iteration is controlled by a “while” structure, the repetition
continues as long as the event that precedes the iteration start evaluates to true. If the iteration is con-
trolled by an “until” structure, the repetition continues until one of the events that follows the itera-
tion end evaluates to true. If a “n-time” control structure is used, the iteration body is repeated n

times.

40

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

4 Advanced Control Structures

In addition to the control structures presented so far, there are further control structures that are as-
sumed to be used less frequently. They are not as obvious as the basic control structures. Therefore we
call them advanced control structures. Note that we do not have sufficient knowledge at this point to
assess the relevance of these control structures for business process modelling in practice. The actual

future use of the language should help to clarify this issue.

4.1 Arbitrary Sequence

It is conceivable that a set of processes must be executed sequentially, but not in a particular order. For
example: Within a clinical diagnosis a patient has to go through an audiometry (process A), he must
have an X-ray (process X) and a blood sample has to be taken (process B). Since these tests do not de-
pend on each other, they could be performed concurrently. This, however, is not possible for technical
reasons. At the same time, it would not be advisable to define a particular order that has to be fol-
lowed with each instance of the clinical process: Apparently, the appropriate order depends on the
availability of resources (medical staff and devices), which may vary from process instance to process
instance. Often, it is sufficient, if not most appropriate, to have the scheduling done by those people
who operate the process. Such a constellation can be represented by the concept of an arbitrary se-
quence. It is an abstraction that represents the set of sequences that can be constructed from a set of
processes. For n processes, the number of possible sequences, hence the number of permutations of n,
equals the factorial of n. The selection of one of these possible sequences happens only at run-time —
either by a human actor or some machine. Hence, it resembles the idea of an ad hoc workflow. It is

also similar to an aggregated process in the sense that it represents a set of processes.

set of processes

> perform X-Ray

[take blood sample
> perform audiometry

perform routine
. diagnosis

diagnosis
cancelled

patient ready
for diagnosis

arbitrary diagnosis
sequence completed

Figure 38: Example of arbitrary sequence

However, different from an aggregated process, it cannot be decomposed into a particular order —
because the absence of a particular order on the type level is its main characteristic. Also, events that
trigger a process within the sequence are not accounted for. This is for a good reason: The semantics of
an event that may trigger a process is not independent from the particular sequence of execution. For
instance: Take the event “Process A terminated”. Its semantics with respect to constructing a valid
sequence varies with the actual order of process A. An arbitrary sequence is represented by a special

symbol that is supplemented by a list of the included processes (see Figure 38).
41

Advanced Control Structures

Abstract syntax: An arbitrary sequence is triggered by an event and produces one or more mutually
exclusive events. The representation of an arbitrary sequence is supplemented by the names of the
processes it represents. From a syntactical point of view it corresponds to an aggregate process. How-

ever, different from that, it cannot be decomposed.

Semantics: An arbitrary sequence represents a set of processes which have to be executed sequentially,

but not in a particular order.

Note that the constellation addressed by the concept of an arbitrary sequence could also be represent-
ed in a more sophisticated way: It would be possible to define the construction of a particular se-
quence depending on the relevant states of a process instance and the resources it requires. This could,

e.g., be accomplished by a scheduling algorithm.

4.2 Arbitrary Sequence with Partial Order

If a partial order is defined for a set of processes, we speak of an arbitrary sequence with partial order.
The partial order reduces the number of possible sequences. A partial order can be defined by a set of
ordering relations, e.g. process A before process D, process E before process C etc. In addition to that it
is conceivable to used conditional partial orders, e.g. A before D, if E before C. Since it is not clear
whether this control structure is relevant for a notable number of scenarios, we do not bother with
defining language concepts to specify arbitrary partial orders. Instead, the representation of partial
order is restricted the defining orders within the list of processes that supplement the specific symbol
for a partial arbitrary order. An arrow pointing from process A to process B defines the partial order

that A has to be executed before B (see example in Figure 39).

Abstract syntax: The abstract syntax of an arbitrary sequence with partial order corresponds to that of
an arbitrary sequence. It is supplemented by directed edges (arrows) that represent partial orders be-

tween two processes

Semantics: An arbitrary sequence with partial order restricts the number of possible sequences by a set
of partial orders. The partial orders must be consistent and must not restrict the number of possible

sequences to one.

...... take blood sample

: check blood pressure
partial order -~ % perform X-Ray

perform audiometry diagnosis
cancelled
—D:P
tient perform routine
patient ready diagnosis

for diagnosis

partial arBitrary

sequence diagnosis
completed

Figure 39: Example of partial arbitrary order

42

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

4.3 Synchronisation Exception

The complete synchronisation of concurrent paths of execution requires accounting for every possible
constellation of final events. Some of the possible constellations may seem extremely unlikely. How-
ever, not accounting for all possible constellations bears the risk of deadlocks. A purposeful incom-
plete synchronisation allows for leaving out constellations that seem extremely unlikely without jeop-
ardising the consistency of a process. This is accomplished by a special kind of exception: A synchroni-
sation exception is an abstraction of virtual synchronisers that cover all constellations of final events
that are not accounted for by explicit synchronisers. A synchronisation exception will fire, if all con-
current trees (graphs) terminate with a final event and the resulting pattern is not accounted for by
any explicit synchroniser. Synchronising parallel paths of execution may fail, too, if a process in one of
the paths does not terminate — or does not produce one of the events it is supposed to produce. Such a
constellation could be regarded as a synchronisation exception as well. However, there are two rea-
sons why this would not be appropriate. First, the problem occurs during the execution of a process.
Hence, the exception should rather be assigned to the process. Second, this kind of synchronisation
exception would be hard to detect: How would one decide whether a concurrent path of execution
that has not yet produced a final event will fail to do so? The concept of a synchronisation exception
should be used with great care: It makes sense only, if certain synchronisation patterns are extremely
unlikely and modelling them explicitly would clearly jeopardise the comprehensibility of the synchro-
nisation structure. Furthermore, the constellations that are left out should be similar in the sense that
they can all be treated with the same kind of exception handling. Figure 40 illustrates the use of a syn-
chronisation exception. The red dots illustrate one possible constellation that is not covered by the

regular synchronisers.

43

Advanced Control Structures

synchronisation < 5
exception Qn

Figure 40: Use of a synchronisation exception

Abstract syntax: A synchronisation exception is associated to a set of concurrent trees (graphs). From a
syntactical point of view it corresponds to a synchroniser. It can be used only, if the synchronisation of
a set of concurrent trees (graphs) is not complete, i.e. if there are constellations of final events that are
not accounted for. It triggers a path of execution that is alternative to any other path of execution re-
sulting from explicit synchronisers. Like with any other exception, this exception handling path of
execution will usually not be represented within the business process model, but separately in order
not to increase a model’s complexity too much. This requires assigning a unique name or identifier to
a synchronisation exception. Unlike regular exceptions, the effect of a synchronisation exception can-

not be specified as “resume”.

Semantics: A synchronisation exception is a special kind of exception. It fires, if a set of concurrent

paths of execution result in a pattern of events that is not covered by explicit synchronisers. If a syn-

44

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

chronisation exception fires, the corresponding concurrent paths of execution are synchronised and

the business process continues with the corresponding exception handling process.

4.4 Exclusive Synchronisation

Splitting a business process in concurrent paths of execution will usually require division of labour
and the subsequent coordination of the concurrent paths, i.e. their synchronisation. In the case of a
disjunctional synchronisation, it is sufficient that one of the corresponding concurrent paths of execu-
tion terminates. It may happen, however, that one of the concurrent paths of execution is of outstand-
ing importance, in the sense that its termination is sufficient for terminating the concurrent execution.
In this case, a regular synchronisation is neither required nor appropriate. The following example il-
lustrates such a case. It is a business process in a real estate company. The business process is started
by a client who wants to sell a major property. The company’s service includes the preparation of a
professional sales brochure and an elaborate search for potential buyers. Since time is critical, both
activities are started concurrently. The main purpose of the business process is selling the property. As
soon as this purpose is accomplished, the business process will be sequentialised and all other concur-
rent processes are meaningless. In other words: If one particular final event occurs, the parallel execu-
tion is terminated. Note that this is different from a disjunctional synchronisation where a final event
is associated with at least one further final event. There may be no feasible way to represent this kind
of synchronisation by the use of conjunctional and/or disjunctional synchronisers. The example in
Figure 41 shows a model of the outlined business process. It is assumed that there is only one possible
outcome of the process “prepare brochure”. The concept of an exclusive synchronisation allows for
specifying one final event that immediately terminates the parallel execution. Note that more than one
final event can be specified as an exclusive synchroniser. This is the case for the example in Figure 41:
Not only finding a buyer but also the cancellation of the sales order will result in terminating the par-
allel execution. The use of disjunctional und conjunctional synchronisers is not sufficient for represent-
ing this kind of exclusive synchronisation. Note that the two alternative final events “buyer found”
and “sales order withdrawn” must not be connected with the same synchroniser since they are not
concurrent. It would require an additional negation operator (non “brochure created”) for expressing
that “buyer found” (or “sales order withdrawn”) will terminate the parallel execution in any case. The
business process model in Figure 42 illustrates this thought. It includes the explicit representation of
the complementary event of “brochure created”. In this case, the intended synchronisation can be ex-
pressed. However, it shows that the resulting synchronisation structure is likely to be confusing.
Therefore, providing the concept of an exclusive synchroniser seems more appropriate then demand-
ing for the representation of possibly irrelevant events and the construction of confusing synchronisa-

tion structures.

45

Advanced Control Structures

+

sales order write report
withdrawn ’\
— alternative
search for v
buyer
L= | prepare
= buyer found invoice
sales order '
received exclusive
synchronisation
prepare brochure
brochure created

Figure 41: Example of an exclusive synchronisation (preliminary)

Abstract syntax: An exclusive synchronisation is associated with one or more alternative (not: concur-
rent) final events of a concurrent tree (graph) of execution. It is associated with the first process of a
sequential path of execution. Within a set of concurrent final events more than one event may be asso-
ciated with an exclusive synchroniser. If an exclusive synchronisation is applied, some final events of
the concurrent trees of execution may not be associated with any synchroniser. This does not, howev-
er, contradict the rule that parallel paths of execution have to be synchronised (see above): As soon as

an exclusive synchronisation fires, all remaining final events are regarded as synchronised.

Semantics: An exclusive synchronisation is a special case of synchronisation, where the occurrence of
one specific final event causes the instant termination — and hence synchronisation — of a set of concur-
rent paths of execution. An exclusive synchroniser is always assigned to exactly one final event. For a
set of concurrent paths of execution to be synchronised it is sufficient that all alternative final events of

one concurrent path are associated with an exclusive synchronisation.

N S \—

sales order
withdrawn

search for
buyer

= buyer found write report
sales order
received

P

e— A

prepare
invoice

— brochure not

ready
prepare

brochure ﬁ—n—

brochure
created

Figure 42: Alternative representation with additional final event (preliminary)

46

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

4.5 Relaxed Concurrency

Designing processes as concurrent allows for reducing the total execution time of a business process.
Therefore it is a good choice, if execution time is critical and independent processes exist. There are
cases, however, where the concurrent execution of processes makes sense, but the processes are not
totally independent. Take, for instance, the example in Figure 41. Apparently, they are independent
only to a limited degree: First, if the search for a buyer is successful, there is no need for a sales bro-
chure anymore. Second, if the brochure is completed, the sales process is affected because it should
make use of the brochure. While the second case is covered by the concept of an exclusive synchroni-

sation, the first case requires a different approach.

In order to cope with this situation, it is required to notify the process “search for buyer” somehow, if
the brochure is ready. This is accomplished by generating a special exception within the process
“search for buyers”. The exception is created by the event “brochure created”. It serves to somehow
notify the human actor or the machine that executes processes in parallel paths that may be affected.
Note that this is kind of exception that we call a “concurrency exception” is different from a typical
exception: First, it does not have to indicate a problematic or even irregular execution. Second, it must

correspond to an event in a parallel path of execution.

Abstract syntax: A process within a concurrent tree (graph) can be assigned a special kind of exception,
a concurrency exception. A concurrency exception is created by a corresponding event within a con-
current tree (graph) - including the final events. This correspondence is expressed by using the same

designators both for the concurrency exception and the event.

Semantics: Two paths of execution are of relaxed concurrency, if it is possible that they are executed
independently and if it is possible at the same time that an event produced by one path affects the
execution of processes in the other path. Such an event creates a concurrency exception. A concurren-
cy exception is meant to cause a meaningful adaptation of the process it is assigned to. The adaptation

can be modelled by an exception handling process.

Figure 43 shows the slightly modified example in Figure 41 supplemented by a concurrency excep-
tion. To clarify that the corresponding paths of execution are of restricted independence, a special

symbol for representing “relaxed concurrency” is used for the concrete syntax.

47

Advanced Control Structures

concurrency
exception
relaxed
brochure X
concurrency created :
; sales order
withdrawn
search for
buyer
X
1 prepare
—H buyer found invoice
sales order
received

prepare brochure
brochure created

Figure 43: Relaxed concurrency, concurrency exception and exclusive synchronisation (preliminary)

4.6 Variable Number of Concurrent Instances

The concept of concurrency allows — as a special case — all concurrent trees (graphs) to be identical or —
in other words — that instances of the same kind are executed in parallel. The number of these parallel
instances may vary from one instance of the business process type to the other. The modelling con-
cepts introduced so far do not allow for expressing a variable number of parallel paths (of the same
kind). We doubt that this is a frequently required control structure. It should not be confused with
multiple instances of one business process type. Russel et al. 2006) for instance, suggest a pattern
called "Multiple Instances without Synchronisation". This is, however, more likely the case for inde-
pendent instances of one business process types. The example they provide as an illustration confirms

this interpretation.

To represent a variable number of concurrent instances, the path of execution that represents possible
concurrent instances is marked by a special concurrency split. The regular symbol for concurrency
splits is supplemented by a symbol that represents the number of executions. The number of execu-
tions can be left open to a decision made during run-time, it can be a constant or a reference to some

variable (see illustration in Table 6).

48

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

PigertEi | number of instances defined by reference to

some object

[n] number of instances to be determined dur-

ing run-time

3 constant number of instances

Table 6: Symbols to represent the number of executions (preliminary)

The MEMO-OrgML does not cover all possible kinds of synchronisation for concurrent multiple in-
stances. This is based on the assumption that only a few specific kinds of synchronisation are needed.
Also, allowing for constructing more versatile synchronisation patterns would corrupt the simplicity

that is intended with the conception of concurrent multiple instances.

Figure 44 shows an example of multiple concurrent instances, the number of which is determined dur-
ing run-time and which are synchronised by a conjunctional synchroniser. It represents a business
process in an advertising agency. The business process is triggered by a customer who wants the
agency develop a new campaign. The final order depends on a presentation of one or more proposals.
Depending on the volume of the order and the time pressure, it is decided how many alternatives are
to be developed and how many teams should work on them in parallel. After all proposals prepared,
there will be a presentation to the customer. The example in Figure 44 is supplemented by a corre-
sponding model for the case of two concurrent instances where regular concurrency is used. While
conjunctional synchronisation means that all parallel instances need to be terminated before sequen-
tialising the process, it is also conceivable that a disjunctional synchronisation is used. It can be an
option in the case of extreme time pressure: The concurrent paths would represent a race between

different actors. As soon as the first path has finished, synchronisation would take place.

49

Advanced Control Structures

multiple

synchronisation of
multiple concurrent

_______ concurrent instances
----------- instances E|
draft present
number of campaign draft created Calculate costs costs options to
pgrillel patgs calculated customer
etermine
corresponds to (n = 2)
synchronisation of
multiple concurrent
JA— insta_r)ces
draft g
: calculate costs costs
- campaign draft created caloulated {ND
resent
number of ogtions to
parallel paths customer
determined
draft draft created Calculate costs costs
campaign calculated

Figure 44: Example of multiple concurrent instances with conjunctional synchronisation (preliminary)

The parallel paths of execution in the above example produce one final event only. It is, however, pos-
sible that each instance results in more than one final event. The example in Figure 45, which is a vari-
ation of the example in Figure 44, shows such a case. Each of the alternative final events can be associ-
ated with a synchroniser. Since the final events are alternative, the synchronisers represent alternative

results, too. This implies that they must be mutually exclusive, which is the case for the depicted com-

bination of conjunctional and disjunctional synchronisers.

o
costs above inform
range customer
numOfTeams
number of drafF calculate costs
campaign draft created
parallel paths R
determined
costs within pr_esent
range options to
customer

Figure 45: Multiple concurrent instances with alternative synchronisers (preliminary)

There is a further pattern of synchronisation that is characteristic for multiple concurrent instances. If,
for instance, the business process in Figure 44 is supplemented by the constraint that the customer
presentation has to take place at a certain date, it might be that not all of the concurrent instances will
terminate in time. This can be expressed by supplementing the conjunctional synchroniser (this is not
possible for disjunctional synchronisers) with a time symbol (either representing a time period or a

point in time). It indicates that all instances that have terminated at the critical time are synchronised

while the others are not accounted for (see Figure 46).

50

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

ENEGET

= —] QD>
draft present
number of campaign draft created ~ Calculate costs costs options to
pgrillel patgs calculated customer
etermine:

Figure 46: Restricted conjunctional synchronisation (preliminary)

Abstract syntax: The abstract syntax of multiple concurrent instances corresponds to the syntax of con-
currency. However, different from that, it depicts only one path of execution (a tree or a graph). The
part of a business process model that is subject of multiple instantiations starts with special concur-
rency split and is terminated with a special synchroniser. The special concurrency split is associated
with exactly one previous event. There are different kinds of concurrency splits for multiple concur-
rent instances: the number of instances can be predefined by a constant or by a variable or it can be left
to a decision during run-time. Multiple concurrent instances can be synchronised only by a synchro-
niser that fits the corresponding concurrency split, e.g. a concurrency split that is characterised by a
constant number of parallel instances allows for a synchroniser only that is also reserved for a con-
stant number of parallel instances. The path of execution that represents multiple instances is termi-
nated by one final event or by set of alternative final events. For semantic reasons, not more than two
alternative final events are permitted. To synchronise the concurrent instances, each of the final events
has to be associated with a synchroniser. The special synchronisers reserved for multiple concurrent

instances must not be associated with further synchronisers.

Semantics: The concept of multiple concurrent instances corresponds to explicitly modelling n corre-
sponding concurrent paths of execution. It can be interpreted as a shortcut, however, only in the case
of a predefined, constant number of instances. Multiple concurrent instances cannot be explicitly rep-
resented, if the number of instances depends on a decision during run-time or on a variable. A con-
junctional synchroniser means that all events of the kind, the synchroniser is associated with, have to
fire before synchronisation. A disjunctional synchroniser means that synchronisation takes place as
soon as one event of the kind, the synchroniser is associated with, fires. There is one further, special
synchroniser. It represents what we call a restricted conjunctional synchronisation. It means that syn-
chronisation accounts for those events of the kind, the synchroniser is associated with, that have fired
until a certain point in time (or after a certain time period has passed). If multiple concurrent instances
result in two synchronisers, one of them must be a disjunctional, the other a conjunctional synchronis-
er. Otherwise, it could be possible to produce inconsistent states: If both were conjunctional, a dead-
lock might occur. If both were disjunctional, they might not be mutually exclusive. It is not permitted
to use a restricted conjunctional synchroniser together with a disjunctional or a further restricted con-
junctional synchroniser. If it was used together with a disjunctional synchroniser, it would be possible
that both synchronisers were not mutually exclusive. The same result could be produces if it was sup-

plemented by a further restricted conjunctional synchroniser.

Note that the constraints relating to the synchronisers could also be regarded as part of the abstract

syntax. They are subsumed under semantics because they basically reflect how synchronisers are to be

51

Advanced Control Structures

interpreted. With respect to the final language specification this does not exclude representing it at

least in part through the abstract syntax

52

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

5 Language Specification

While the previous description of the language should be sufficient for most users, a more precise def-
inition of the language’s abstract syntax and semantics is required to enable the implementation of
corresponding modelling tools. A meta model serves to specify the abstract syntax and semantics. In
addition to that, the concrete syntax, i.e. the graphical notation, is presented as a catalogue of all nota-

tion elements.

5.1 Meta Model

Like with any conceptual model, the construction of a meta model should be based on thorough de-
sign decisions, which in turn should be based on a reflective design philosophy or specification style.
Among other things, a design philosophy comprises a principal choice between putting more empha-
sis on syntactical or semantic constraints (see Frank 2010, pp. 47). Representing language concepts on
a syntactical level comes with the advantage that there is less need for complex constraints. On the
other hand, syntactical specifications cause problems for a corresponding modelling tool, if frequent
changes to a model are to be expected. The following example illustrates the difference between the

two specification styles.

name: String emphasis on semantic constraints

0,* 0,* 0,

context Subprocess

inv:

self.type=#manual implies not (self.uses.Software->exists or
self.uses.Class->exists or self.uses.Method->exists)

sasn »

A manual process must not be assigned Software,
Method (of a class) or a Class.

Subprocess
<uses name: String
0+ |type: <#automated, #manual ...>

Subprocess

emphasis on syntactical constraints

<uses AutomatedProcess

Figure 47: Difference between Specification Styles

53

Language Specification

A business process model will usually evolve during a process of communication with different
stakeholders. As a consequence, it is very likely that it passes various stages of evolution which may

be accompanied by substantial modifications, such as changing types of events or subprocesses.

Therefore, the specification style chosen for the meta model puts emphasis on semantic constraints.

The documentation of the meta model comprises three parts: the meta model, constraints in OCL and

a dictionary of all concepts. The specification of the meta model makes use of auxiliary types. They are

presented in Table 7.
Specification

Money

currency: String
amount: Float

Comment

Money serves to specify financial amounts
together with the respective currency.

type: {#any, #auto, #semi_auto, #manual}

Duration Duration allows to define a time period us-
unit: TimeUnit ing a selected unit of time.
dur: Float
ProcessType ProcessType is used to specify different

types of subprocesses.

TimeEvent

time: {#point, #interval}

TimeEvent allows for specifying whether an
Event is created at a point in time or after a
time interval has passed.

Notification

type: {#humanNil, #humanSynch, #humanTradi,

#humanElectronic, #softNil, #softPoll, #softPublish}

Notification serves the specification of differ-
ent types of Events.

Change

change:{#nil, #created, #modified, #deleted}

Change allows differentiating types of
change that result in an Event.

Decision

type: {#nil, #auto, #human, #clear}

Decision can be used to differentiate types
of decision as they may be assigned to a
Branching.

Cause

cause: {#nil, #human, #failure, #timeOut}

Cause allows for specifying a type of cause
for an Exception.

Effect

effect: {#nil, #resume, #cancel}

Effect serves to specify whether an Exception
results in terminating a BusinessProcess the
respective Subprocess is part of or not.

Detection

detect: {#nil, #auto, #likely, #chance}

Detection allows for specifying how an Ex-
ception is detected.

SynchType
type: {#and, #or}

SynchType allows for specifying how paral-
lel threads are to be synchronised.

54

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Affirmation Affirmation serves expressing assessments.

level: {#high, #medium, #low}

Performance Performance serves the differentiated speci-
strengths: String fication of the performance related to a pro-
weaknesses: String
potential: String cess.
perfLevel: Level

Qualification Qualification allows defining the actual or
description: String demanded qualification of a position, role,
field: String In th f busi del
level: String etc. In the case ot business process model-
experience: ;#n?’t# ";t_lef)#SatiSfaCtorY: ling, it is used to describe qualification rel-

outstanding .

evant for performing processes.

Table 7: Auxiliary Types

The meta model is specified in the MEMO Meta Modelling Language (Frank 2011a). The concepts of
the meta model can be divided into two groups: Meta types are used to specify essential concepts for
modelling business process types. They are instantiated into types and represented as such in corre-
sponding business process models. They are also needed for executing respective process instances.
Additional types, represented with the type name on a grey background, serve to represent modelling
concepts that are not instantiated into types, but into instances that serve the purpose support the cre-
ation of syntactically valid models. They are not relevant for managing process instances. Note that
AnyProcess is a special case: It serves to represent subprocess types that form an arbitrary or partially
ordered sequence. Corresponding instances (subprocess types) are represented in a model. However,
they would not be instantiated as such: The instantiation of an arbitrary sequence will always result in
a particular sequence. Hence, the corresponding subprocesses would rather be instances of Control-
FlowSubprocess. This may seem inconsistent at first. However, if one regards an instance of AnyProcess
as an abstraction that represents a corresponding set of particular sequences, the instance-level of con-

sist of an instantiation of one of these alternative sequences.

The representation of the meta model in Figure 48 includes references to constraints, which are speci-
fied in Table 8. Note that the meta model is not fully specified. Concepts like ExclusiveSynch and Con-
currencyException are underspecified (i.e. they lack additional constraints), because their semantics is

still subject of further requirements analyses.

55

ing

S3SSID0IJ U0 SNI0J - [PPOIAl BIRIN TINSIO OAIA 8% 21nS1

PR

Focus on Process Modell

<« sainbay J436aur lequinu 4 sainbay

oy saydde »
1'o o1 sa)dde » VL
20 BULIIS TU0BIpUOD | |
Buins :uondLosap
Buing :uonduosep BuLas soweu 200> puguonessr
1'o
uopdaoxgzAduaunsuo) uondaaxayouls L yesieaday ss3901dpasodwion
T S13B61A »- 1o
L1 Jaye " paoed » « yImTspels
T vr
esuonesalr Oy
1661 » o vo 510
B «saunbas =)
P —
a10j5q” pace|d »
Jsye”paoeyd » Ay — O
Vo ueajoog :paxep| HO <oy peoed 4 UIMSBjBuIuLIE)
Lo 4@baju :speayyoou T
e e [43) —]
« 210j3q peoeyd / T
o . e prempre ssa00.d|erHedAte Gy BuLns :uondusep
- - v RN /| soye”paoeid p L E
<@ioegTpaoed L2 [VO 1L 1y 1L ﬁu 3 6uis :aweu
_) E
o Woly spuayul z
1'0 | “
' 5 J o «sye peoeid Lo
o 1o e J+‘ P
[I— [0 o sesldwoo
uoispaq :UOKDIP P
Buppuesg EELCED L L 585N »
VL
o swny sawnydos g - ¢ :
g = 1 WL -aWiLels Buig :uondunss)
sjussaidal P . - 4 1S :uonduosap
<) I « usynsa; 10 %m_oom._mfuwm A P awiy Ingene ueajpog :euondo
b Kq pasabbLy » 1 ueajoog JeIss| o adhssao0.d 1adky QU 8520 2wl naxew BuLns :euweu
_ JUBAFBWILY B — . sy nguiw O] g
21038 paoe|d » 1'0 | uonesynoN ‘uopeaynou| +0 $5920.dgNSMOLH|0[U0D) | 1aBay :saouesurEAe [0 0
P abueyd buep o > 1ad :oueuuopad 0] *
. BuLys :aweu g 610 51966 » 0 uoneuuyy :BupINosino 40 ped
P L0 s uonedyend jendbas| | ‘0
" asiebbu - SRl uonda3eq ,co_.ﬁmuw_u | enb| . ;
Vo B ssney izsney eon o <o BULYS JUBLLILIC
N ioB61 W23 1PRYK > ueajoog :dwo)aI0n JUBLILIO)SSD01
I < 0 Bus :aweu uoneEyIepIO buls :Bweu
L'l J0 abieyo 0 , ‘
HeIss|um Vo 513661 N $5800.dAUY
1o |, 120 Eryr=——]
2b | adALypuds :adhy, adALyduAs :adk 98N » L Ao Bem [epede
Ex uea|oog 103N P — . R sosn» <1099 Vo -
I Z Vo -0 =) [2AS7 :UOIDERJSHESISND
103e001jva10Y Ed Ed . el 19A37 :uonpaduwiod| +'0
« 519660 =4 a buws :p! @ - 1804 :30UBLEAIND suoddns
, _w ﬂ pr—— 8 103230} |y2(G0 uopeInq :uone.ngane ,A
o) o, =} 3E20][YUORISOd : 1e0l4 :aouepepnal| + 0
vo X0 1 :uoISIABYISE|
.) I \ — = AQuo aayane <0
Ue3|00g ‘feUIIals = =
‘o oog :J L5 s s A _ jo7yed » 520 . a1eq :payuawaldu
— & & 3 €J0 walqo 1o
« s12661 m m 3
l'a. by 5
« saunbas 1o v vo Lo (AN 4 ~0 |4'0 S0 | FE -0
o 41266 Aew

fuLng :uondiosap
appdwody epwiss adky|

Uope[aYSS3I0Id

E Junjeuonesiuebio

R

joyedy

Language SpecificationThe MEMO Organisation Modelling Language (2)

(sabenbue| Jayjo 0} S0BS)U|) IXSIU0D SSA0IJ

56

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

The constraints serve to promote model integrity. Some constraints can be applied on an ad hoc base,
i.e. they allow for preventing particular edit operations immediately. For example: An event must not
trigger a subprocess and a fork at the same time. Other constraints make sense only, if a process model
is in a widely complete state. For instance: Every fork that starts a concurrent execution of threads
requires at least one final synchroniser. However, it does not make sense to demand for the synchro-
niser as soon as the fork was created. Therefore, this group of constraints is supposed to be tested on

demand only. In Table 8 ad-hoc constraints are marked as such.

Context ControlFlowSubprocess A ControlFlowSubpro-

nv. . o cess must not result in

self.results_in.Event <> null implies
self.results_in.Branching = null (‘ad hoc) an Event and a Branch-

ing at the same time.

context ControlFlowSubprocess A manual ControlFlow-
inv: Subprocess must not be
self.type = #manu_al implies (self.uses.Software->i_sEmpty and . d ftware
self.uses.Class->isEmpty and self.uses.Method->isEmpty) Cm) assigned a so
artefact.

context ControlFlowSubprocess Either a role type or an

inv: OrganisationalUnit type
self.in_charge_of.OrgUnit <> null implies .
can be in charge of a

self.in_charge_of.Role = null Cm) ControlFlowSut
ontrolFliowsubprocess,

never both. As an im-
plicit constraint, it
should never be more
than one instance that
is assigned to a particu-
lar process instance.

context Event BusinessProcess com-
inv: prises all elements that
self.part_of.BusinessProcess <> null implies self.isStart (M) .

— constitute the corre-

sponding process type.
It is, however, suffi-
cient to link it to the
start Event only.

context Event A start Event must not
e - - represent a Branch.
self.isStart implies self.represents.branch = null (ad hoc)

57

Language Specification

context Event

inv:

self.isTerminal implies (self.triggers.Software = null and
self.triggers.Subprocess = null and self.triggers.Fork = null and
self.triggers.Synchronizer = null)

(ad hoc)

A terminal Event must
not trigger anything.

context Event

inv:

self.triggers.ControlFlowSubprocess <> null implies not (self.triggers.For <>
null or self.triggers.RegularSynch <> null or self.triggers.ExclusiveSynch <>
null or self.triggers.MultiSynch <> null or self.placedBefore.EventMerger <>
null) and self.triggers.Fork <> null implies not
(self.triggers.ControlFlowSubprocess <> null or self.triggers.RegularSynch <>
null or self.triggers.ExclusiveSynch <> null or self.triggers.MultiSynch <> null
or self.placedBefore.EventMerger <> null) and self.triggers.RegularSynch <>
null implies not (self.triggers.ControlFlowSubprocess <> null or
self.triggers.Fork <> null or self.triggers.ExclusiveSynch <> null or
self.triggers.MultiSynch <> null or self.placedBefore.EventMerger <> null) and
self.triggers.MultiSynch <> null implies not
(self.triggers.ControlFlowSubprocess <> null or self.triggers.Fork <> null or
self.triggers.ExclusiveSynch <> null or self.triggers.RegularSynch <> null or
self.placedBefore.EventMerger <> null)

An Event must not
trigger more than one
subsequent element at
a time.

context Event
inv:
self.isTerminal implies not (self.isStart)

(adhoc)

An Event cannot be a
terminal and a start
event at the same time.

context Event

inv:

Event.alllnstances()->forAll(a|if a.isStart then not
Event.alllnstances()->exists(bla<>b and b.isStart and
b.part_of = a.part_of) endif)

(adhoc)

There must be no more
than one start Event.

context Branching

let result = 0.

inv:

self.includes.Branch->exists(ala.percentage <> null) implies

(self.includes.Branch->iterate(a; | if a.percentage <> null then
result+a.percentage else result end)) and result = 100.

If a probability is as-
signed to a Branch, then
the sum of all probabil-
ities of all branches
linked to one Branching
must be 100.

context Synchronizer

inv:

self.triggers.ControlFlowSubprocess <> null
implies not (self.triggers.Branching <> null or
self.triggers.Synchronizer->isEmpty())
self.triggers.Branching <> null

implies not (self.triggers.ControlFlowSubprocess
<> null or self.triggers.Synchronizer->isEmpty())

(adhoc)

A Synchroniser must
not trigger more than
one subsequent ele-
ments at a time.

context ProcessMerger

inv:

self.placed_before.Event <> null implies not
(self.placed_before.Branching <> null)

(ad hoc)

A ProcessMerger must
not be placed before an
Event and a Branching at
the same time.

58

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

C13_ ArbitrarySeqProcess Since a process type
inv: does not make sense
self.type = null.

P ((ad hoc) for these processes
(except for the case that

Cile gontext ArbitraryPartialProcess all processes they
nv: .
self.type = null. (m comprise are of the

same type), these con-
c15 straints excludes as-
context AggregateProcess L
inv: signing a type — and at
self.type = null (‘ad hoc) the same time enables

to take advantage of
specialising them from
ControlFlowSubprocess.
This is a pragmatic —
not an elegant - solu-

tion.

ALl context AggregateProcess An aggregate process
inv: must not be restricted
self.startsWith <> self.terminatesWith.

(adhoc) to one subprocess.

S context SynchException A SynchException must
inv: :
self.triggers.ConrolFlowSubprocess <> null implies not trlgger a Control

(self.triggers.Branching = null) (ad hoc) FlowSubprocess and a

Branching at the same

time.
context EventMerger An EventMerger must
inv:
self.placed_before.ControlFlowSubprocess <> null implies not be placed before a
(self.placed_before.Fork = null) (ad hoc) Contr0|F|OWSprrOCGSS

and a Fork at the same
time.

context Event There has to be at least

nv- . , . one terminal event
Event.alllnstances()->exists (e | e.isTerminal = true)

type within a business
process model. Note
that this is a weak con-
straint, since it does not
account for alternative
paths of execution each
of which may results in
a separate terminal

event.

59

Language Specification

context Event
inv:
self.loaded implies self.triggers.Fork <> null.

(adhoc)

An event type can be
marked as loaded only,
if it is placed before a
fork.

context OrderRelation
inv:
self.before <> null or self.after <> null.

There must be a sub-
process either before or
after any subprocess
within an ArbitraryPar-
tialProcess.

28 ontext WhileStart A WhileStart must not
’”‘ﬁ \acedBefore.isStart = fal be placed before a start
self.placedBefore.isStart = false.

(adhoc)
Event.

5B Context ProcessRelation Two BusinessProcess
def:
let br: self.relates.asOrderedSet() types that are related
inv: :
brat(1) <> br.at(2) (ado0) must be different.

C25 _
context BusinessProcess S peCIahsatlon associa
def: let allSuperTypes: collect (me | me = me.special_case_of) tions between Busi-
inv: (self.allSuperTypes-> includes self) = false

(adhoc)
nessProcess must not

be cyclic.

context ControlFlowSubprocess
inv:
self.results_in.Event <> self.triggered_by.Event

(adhoc)

The event type that
triggers a subprocess
type must be different
from the event type
that results from a

subprocess type.

context ControlFlowSubprocess

def: let allSuperTypes: collect (me | me = me.inherits_from)

inv: (self.allSuperTypes-> includes self) = false

(ad hoc)

Inheritance associa-
tions between subpro-
cess types must not be

cyclic.

context EventMerger
Inv:
self.eventMerger->size() + self.event->size() > 1.

(adhoc)

An event merger needs
to link at least two el-

ements — which may be
event types and/or oth-

er event mergers.

§ B _E B

context ProcessMerger
Inv:

self.controlFlowSubprocess->size() + self.processMerger->size() > 1.

A process merger
needs to link at least

two elements — which

60

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

may be subprocess

types and/or other pro-

cess mergers.

context Fork
def: successors (in: Element) : Sequence(Entity) = All concurrent pathS Of

if elt.ocllsKindOf(ControlFlowSubprocess) then H 1 .

if elt.results_in.Event <> null then a Para el execution
Set{elt.results_in.Event}

elseif not elt.results_in.Branching->isEmpty() need to be synchro-
elt.results_in.Branching

elseif ProcessMerger.allinstances()->exists(pm|pm.placed_after=elt) then 1 3
ProcessMerger.allinstances()->select(pm|pm.placed_after=elt) nlsed approprlately'

endif . .
elseif elt.oclisKindOf(Event) then For an illustration see

if elt.triggers.ControlFlowSubprocess <> null then
Setf{elt.triggers.ControlFlowSubprocess} Figure 13

elseif elt.triggers.RegularySynch then
Setf{elt.triggers.RegularySynch}
elseif elt.triggers.ExclusiveSynch then
Setf{elt.triggers.ExclusiveSynch}
elseif elt.triggers.MultiSynch then
Setf{elt.triggers.MultiSynch}
elseif not elt.triggers.Fork->isEmpty() then
elt.triggers.Fork
elseif EventMerger.alllnstances()->exists(em|em.placed_after = elt) then
EventMerger.alllnstances()->select(em|em.placed_after = elt)
endif
elseif elt.ocllsKindOf(Synchronizer) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Fork) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Branching) then
elt.including->iterate(branch res = Set{}|
Set{}.including(Event.allinstances()->select(ala.represents = branch)->iterate(a result = null| a))

)
elseif elt.ocllsKindOf(EventMerger) then
if elt.placed_before.ControlFlowSubProcess <> null then
Seqfelt.placed_before.ControlFlowSubProcess }
elseif elt.placed_before.Fork <> null then
Seqfelt.placed_before.Fork}
end
elseif elt.ocllsKindOf(ProcessMerger) then
if elt.placed_before.Branching <> null then
Seq{elt.placed_before.Branching}
elseif elt.placed_before.Event <> null then
Seqfelt.placed_before.Event}
endif
endif
endif
def: findRadical(start:Element,findWhat:Set(),forks:Set(),synchronizers:Set(), visited:Set()):Boolean =
if visited.includes(start) then
/* If a node has been visited more than once --> terminate iteration */
false
elseif findWhat.includes(start) then
/* when arrived at the synchronizer, all intermediate forks and synchronizers */
/* must have been visited already */
forks->forAll(fork|requires->exists(requirement|synchronizers.includes(requirement)))
and
/* for each synchronizer a corresponding fork must have been visited */
synchronizer->forAll(sync | forks->exists(fork| fork.requires.includes(sync)))
else
if successors(start)->isEmpty() then
/* if the required synchronizers are still missing and no successors */
/* are available, terminate */
false
else
/* otherwise search beginning with all successors of the current element */
/* for synchronizers. Add current element to already visited elements */
/* collect all succeeding elements that are kind of Fork and all succeeding elements */
/* that are kind of Synchronizer */
successors(start)->forAll(suc|
findRadical(suc, findWhat,
forks+successors(start)->select(fork|fork.ocllsKindOf(Fork)),
synchronizers+successors(start)-
>select(fork|fork.oclIsKindOf(Synchronizer)),
visited.including(start)))
endif
endif
/* try finding all synchronizers that correspond to a fork using a breadth-first search */
/* that includes all intermediate forks */
inv: findRadical(self,self.requires,Set{},Set{},Set{})

61

Language Specification

S8 context IterationStart Each path of execution
def: successors (in: Element) : Sequence(Entity) =
if elt.ocllsKindOf(ControlFlowSubprocess) then that starts with an Iter-
if elt.results_in.Event <> null then
Set{elt.results_in.Event} ation Start, must end in
elseif not elt.results_in.Branching->isEmpty() ’
elt.results_in.Branching : : _
elseif ProcessMerger.allinstances()->exists(pm|pm.placed_after=elt) then a correspondmg ltera
ProcessMerger.allinstances()->select(pm|pm.placed_after=elt) :
endif tion end.
elseif elt.ocllsKindOf(Event) then
if elt.triggers.ControlFlowSubprocess <> null then 1 3 1 _
Setf{elt.triggers.ControlFlowSubprocess} This apphes to Inter
elseif elt.triggers.RegularySynch then mediate iterations, too
, .

Setf{elt.triggers.RegularySynch}
elseif elt.triggers.ExclusiveSynch then
Setf{elt.triggers.ExclusiveSynch}
elseif elt.triggers.MultiSynch then
Setf{elt.triggers.MultiSynch}
elseif not elt.triggers.Fork->isEmpty() then
elt.triggers.Fork
elseif EventMerger.alllnstances()->exists(em|em.placed_after = elt) then
EventMerger.allinstances()->select(em|em.placed_after = elt)
endif
elseif elt.ocllsKindOf(Synchronizer) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Fork) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Branching) then
elt.including->iterate(branch res = Set{}|
Set{}.including(Event.allinstances()->select(ala.represents = branch)->iterate(a result
= null| a))

elseif elt.ocllsKindOf(EventMerger) then
if elt.placed_before.ControlFlowSubProcess <> null then
Seq{elt.placed_before.ControlFlowSubProcess }
elseif elt.placed_before.Fork <> null then
Seq{elt.placed_before.Fork}
end
elseif elt.ocllsKindOf(ProcessMerger) then
if elt.placed_before.Branching <> null then
Seq({elt.placed_before.Branching}
elseif elt.placed_before.Event <> null then
Seq({elt.placed_before.Event}
endif
endif
endif
def:
findRadical(start:Element,findWhat:Element,iterationStarts:Set(),iterationEnds:Set(),visited:Se
t()):Boolean =
/* starts with the current element — searching all paths for the required element. Required
element is searched for with findWhat, which represents a breadth-first search */

if visited.includes(start) then
/* If an element had been visited -> iteration & termination */
false
elseif start = findWhat then
/* If iteration end was reached, check whether all visited iteration starts could be closed
*/
/* within the analysed paths */
iterationStarts->forAll(is | iterationEnds.includes(is.requires))
and
/* lteration ends have to be started respectively closed within the respective paths */
iterationEnds->forAll(ie | iterationStarts->exists(is|is.requires))
else
if successors(start)->isEmpty() then
/* if no successors exist, terminate (fail) */
false
else
/* recursive call including all successors of the current element */
[* Al iteration starts and iteration ends need to be memorized */
/* and each current element is added to those already visited */
successors(start)->forAll(suc|
findRadical(suc, findWhat,
iterationStarts+lterationStart.allinstances()->select(is | successors(start)
->exists(alis.placedBefore = a)),
iterationEnds+lterationEnd.allinstances()->select(ie | successors(start)
->exists(alie.placedBefore = a),
visited.including(start)))
endif
endif
inv: findRadical(self.placed_after,self.requires.placed_after,Set{},Set{},Set{})

62

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

context BusinessProcess Each business process
/* detect successor of an element, returns a sequence */
def: successors (in: Element) : Sequence(Entity) = has to terminate in one

if elt.ocllsKindOf(ControlFlowSubprocess) then
if elt.results_in.Event <> null then
Set{elt.results_in.Event}
elseif not elt.results_in.Branching->isEmpty()
elt.results_in.Branching
elseif ProcessMerger.allinstances()->exists(pm|pm.placed_after=elt) then
ProcessMerger.allinstances()->select(pm|pm.placed_after=elt)
endif
elseif elt.ocllsKindOf(Event) then
if elt.triggers.ControlFlowSubprocess <> null then
Set{elt.triggers.ControlFlowSubprocess}
elseif elt.triggers.RegularySynch then
Set{elt.triggers.RegularySynch}
elseif elt.triggers.ExclusiveSynch then
Set{elt.triggers.ExclusiveSynch}
elseif elt.triggers.MultiSynch then
Set{elt.triggers.MultiSynch}
elseif not elt.triggers.Fork->isEmpty() then
elt.triggers.Fork
elseif EventMerger.alllnstances()->exists(em|em.placed_after = elt) then
EventMerger.alllnstances()->select(em|em.placed_after = elt)
endif
elseif elt.ocllsKindOf(Synchronizer) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Fork) then
elt.triggers.ControlFlowSubProcess
elseif elt.ocllsKindOf(Branching) then
elt.including->iterate(branch res = Set{}|
Set{}.including(Event.alllnstances()->select(ala.represents = branch)->iterate(a result = null| a))

or more end events.

)
elseif elt.ocllsKindOf(EventMerger) then
if elt.placed_before.ControlFlowSubProcess <> null then
Seq{elt.placed_before.ControlFlowSubProcess }
elseif elt.placed_before.Fork <> null then
Seq{elt.placed_before.Fork}
end
elseif elt.ocllsKindOf(ProcessMerger) then
if elt.placed_before.Branching <> null then
Seq{elt.placed_before.Branching}
elseif elt.placed_before.Event <> null then
Seqf{elt.placed_before.Event}
endif
endif
endif
def: findRadical(start:Element,visited:Set()):Boolean =
if visited.includes(start) then
/* Falls Zirkulation -> Abbruch */
false
elseif start.isKindOf(Event) and start.isTerminal then
/* Falls terminierendes Event -> positiv */
true
else
if successors(start)->isEmpty() then
/* if there is no successing element, terminate */
false
else
/* repeat procedure with successor of current element
/* and add current element to already visited elements */
successors(start)->forAll(sucl|findRadical(suc,visited.including(start)))
endif
endif
inv: findRadical(Event.allinstances()->select(ala.isStart and a.partOf(self)),Set{})

Table 8: Constraints

5.2 Language Concepts

The specification of language concepts in the meta model and supplementing constraints is demand-
ing to read and understand. The following comments on selected language concepts are supposed to
foster a better understanding of the specification. The first of the multiplicities that are shown for each

association is linked to the focussed meta type — presented on top of the two.

63

Language Specification

AnyProcess

name

This is an abstract meta type that serves specifying core features of processes.

String

ControlFlowSubprocess, BusinessProcess

Attributes on type level

Allows for assigning a type name. Note that the name should be unique
within the context of a business process type. Nevertheless, there is no
respective constraint, because there may be cases where it seems appro-

priate to assign more than one (sub) process the same name.

coreComp

Boolean

If coreComp is set to true, this indicates that performing the correspond-

ing process type represents a core competence.

critical

Boolean

Serves to specify whether a process type is of critical competitive rele-
vance. If both, coreComp and critical are set to true, the corresponding

process can be regarded as a core process.

quali

Qualification

Serves to specify the actual qualification that is — on average — available

for performing processes of this type.

reqQuali

Qualification

Serves to specify the qualification that is required for performing pro-

cesses of this type on a satisfactory level.

outsourcing

Affirmation

Allows for expressing to what degree the corresponding process type is

a candidate for being outsourced.

Attributes with reference to instance level

<<intrinsic>>

part_of

1%

performance Performance | Serves the description of the performance related to a process. A corre-

<<obtainable>> sponding value may be obtained from an external system that monitors
the performance of instances.

avelnstances Integer Stores the average number of instances within a certain time period, e.g.

<<obtainable>> the months of a year. The value can be obtained from an external system
such as a Workflow Management System.

minDur Time Serves the description of the minimum duration of processes of this type.

<<obtainable>> It can be either defined or obtained from an external system.

maxDur Time Serves the description of the maximum duration of processes of this type.

<<obtainable>> It can be either defined or obtained from an external system.

aveDur Time Serves the description of the average duration of processes of this type

<<obtainable>> within a certain time period. It can be either defined or obtained from an
external system.

startTime Time This attribute is intrinsic, i.e. it applies to instances of corresponding types

<<intrinsic>> only and serves to store the start time of a particular instance.

stopTime Time This attribute is intrinsic, too, and serves to store the termination time of a

particular instance.

Associations

with ComposedProcess . This association corresponds to the Composite

Pattern. Its purpose is to allow for process decomposition diagrams. Note

64

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

comprises 0,1 that this abstraction comes with a disadvantage: On the highest level, a
composite process is an entire business process type, hence, should be
represented by an instance of BusinessProcess. However, the language
specification does not allow for expressing that. Instead, an instance of

ComposedProcess would be used to represent business process type.

described_by 1% with ProcessComment. One or more comments can be assigned to any
refers 0.* process type.

includes 0* A process may include various tasks. In case the order of performing
is_part_of 0* tasks is relevant, tasks should be modelled as subprocess types.

Table 9: Comments on AnyProcess

The two following concepts are specialisations of the previous one.

BusinessProcess is instantiated into business process types. The meaning of a business
process type is defined through the control flow it refers to by pointing to the start Event.
. Business process types can be used within business process maps, which requires various
BusinessProcess)]))
kinds of relationships between business process types. Furthermore, they serve for repre-
senting features that apply to the entire type rather than to its components. Features in-
herited from the supertype are not described again.
‘ Example Instances
“Claims Handling”, “Order Management”
Supertype
AnyProcess
Attributes on type level
implemented Date Serves to specify the data when a business process type was first imple-
mented.
aveRev Money Serves to store the average revenues of corresponding process instances
within a certain time period.
lastRevision Date Serves to specify the data when the corresponding business process type
was last revised.
revVariance Float Serves to store the variance of revenues of corresponding process instanc-
es within a certain time period.
aveDuration Duration | Serves to store the average duration of corresponding process instances
within a certain time period.
durVariance Float Serves to store the variance of durations of corresponding process in-
stances within a certain time period.
competition Level Serves to specify the level of competition the corresponding business
process type has to deal with.
custSatisfaction Level Allows for specifying the level of customer satisfaction.

65

Language Specification

Associations

related_by 2,2 with ProcessRelation . It serves to define undirected associations like
relates 0% similarity or competition between business process types. There are al-
ways two different business process types associated with zero or many

instances of ProcessRelation.

may_trigger 0,* with self. Allows to express that instances of zero or more business

triggered_by 0% process types may trigger instances of one of more business process types.
While this will usually be a different business process type, a correspond-
ing constraint is not specified, because it is conceivable that an instance of

a business process type triggers a further instance of the same type.

supports 0,* with self. Allows to express that instances of zero or more business
supported_by 0+ process types support instances of zero or more business process types.
While this will usually be a different business process type, a correspond-
ing constraint is not specified, because it is conceivable that an instance of

a business process type supports a further instance of the same type.

special_case_of 0,* with self. This association serves to express that zero or more business
specialized_to 01 process types can be specialised from zero or one further business process
type. Note that there is no formal semantics specified for this association —
except that it must not be cyclic. Therefore it serves only to express an

assessment of a modeller, which may be utilised for maintenance purpos-

es.

There are serious reasons why a conception of process specialisation that satisfies the substitutability

constraint is not feasible (see, e.g. Frank 2012). Therefore, the only constraint that is specified serves to

prevent cyclic association.

Table 10: Comments on BusinessProcess

The following concept, ControlFlowSubprocess, represents subprocess types. The MEMO OrgML allows
for differentiation various types of subprocesses, such as manual, automated etc. There are two design
alternatives to represent this variety of possible types. On the one hand, one could explicitly specify
corresponding meta types, e.g. as specialisations of a common meta type. This approach would have
the advantage that specific constraints, e.g. that a manual subprocess type must not be associated with
Software, could be guaranteed on a syntactical level. It comes, however, with the disadvantage that
changing the type of a subprocess during the lifetime of a model will require changing the type/class
of the respective element during run-time of a corresponding tool. Therefore, the specification is
based on the second option, where the type of a subprocess is defined using an attribute. As a conse-
quence, a corresponding constraint can be checked only by checking the state of the instance of Con-
trolFlowSubprocess. One does not have to be enthusiastic about such a specification, but seems to be the

lesser of two evils.

66

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

ControlFlowSubprocess is instantiated into subprocess types of a business process
ControlFlowSubprocess | type. Each subprocess type can be represent a certain type of process, e.g. manual,

automated etc. Features inherited from the supertype are not described again.

AnyProcess

Example Instances

“Check Credibility”, “Register Order”, “Prepare Invoice”

‘ Attributes on type level

type ProcessType Allows for specifying the particular type of the subprocess type.

external Boolean Serves to specify that instances of this subprocess type are executed

within an external organisation.

placed_before 2% with ProcessMerger. Two or subprocess types that are part of alterna-
placed_after 01 tive paths of execution can be merged by using a ProcessMerger.
terminates_with 1,1 with AggregateProcess.

terminal_process_of 0,1

generates 1% with Exception. An exception type may occur in one or many subpro-
occurs in 0.* cess types. A subprocess type can generate zero to many exception types.
uses 0* with ObjectAllocator. ObjectAllocator serves to express that a specific
used_by 0* object is used by a subprocess type. Note that this is not a particular in-

stance. Instead, ObjectAllocator allows identifying/distinguishing poten-
tial instances of a class throughout a business process type. Each ObjectAl-
locator is associated with exactly one class represents an instance of. It can
also be associated with a method. Similar associations include those with
PositionAllocator and RoleAllocator — however, the meaning of these

associations is different.

managed_by 0,* with OrganisationalUnit. Serves to assign an organisational unit that is in
in_charge_of 01 charge of the subprocess type. Similar associations include those with
Class, Method, Position, Role, and Organisation — however, the meaning
is different in the case of Class and Method.

placed_before 1,1 with IterationEnd. A subprocess type is placed before each instance of

placed_after 01 IterationEnd. Zero to one instances of lterationEnd may be placed after an
’ IterationEnd.

triggered_by 01 with Event. A subprocess type is triggers zero to one Event types and is

triggers 01 triggered by zero to one Event types.

triggered_by 2% with Fork. An instance of Fork triggers at least two instances of Control-

triggers 01 FlowSubprocess (i.e. a subprocess type).

placed_after 0,1 with EventMerger. An instance of ControlFlowSubprocess can be placed

placed_before after or before zero to one mergers.

67

Language Specification

0,1
triggered_by 0,1 with SynchException. An instance of SynchException trigger exactly one
triggers 01 subprocess type.
results_in 1,1 with Branching. An instance of Branching always results from an instance
produced_by 01 of a subprocess type.
results_in 0,1 with Event. A subprocess type results in zero or one event types.
produced_by 0.1
triggered_by 0,1 with Synchronizer. The synchronisation of concurrent paths of execution
triggers 01 triggers either a subprocess type or a branching.
before 0,1 with OrderRelation. This association serves to specify the temporal order
after 0* of execution of two subprocess types within a partially ordered arbitrary
' process. A partially ordered process type (instance of ArbitraryPartialPro-
cess) represents a set of subprocess types that are executed sequentially
without a predefined temporal order.
part_of 2% with ArbitrarySeqProcess. Two or more subprocess types can be assigned
comprises 11 to an arbitrary sequential process. A arbitrary sequential process type
’ (instance of ArbitrarySeqProcess) represents a set of subprocess types that
are executed sequentially without a predefined temporal order, however,
with a few constraints that define partial execution orders.
is_terminal_of 1,1 with AggregateProcess. A subprocess type can mark the final subprocess
terminates with 01 of an aggregate process. Note that an aggregate process must not start
’ with a further aggregate process.
is_start_of 1,1 with AggregateProcess. A subprocess type can mark the starting subpro-
starts with 01 cess of an aggregate process.
inherits_from 0,* with self. A specialisation of process types that would satisfy the substi-
inherits_to 01 tutability constraint is no possible. The “inherits_from” association repre-
sents a pragmatic compromise. It is restricted to inheriting tasks and
methods (of classes) from a super process type. Inherited tasks should not
be overridden (for methods this is not possible anyway, because there
definition is out of the scope of the OrgML). Inheritance relationships
must not be cyclic. Note that this is a preliminary concept to foster some
degree of reuse. Therefore, further constraints, e.g. to prevent a manual
process to inherit from an automated or the other way around are not
specified yet.
A ControlFlowSubprocess must not result in an Event and a Branching at the same time.
If the process type of an instance of ControlFlowSubprocess is set to #manual, it must not be as-
signed a software artefact.
=1 Either a role type or an OrgansationalUnit type can be in charge of a ControlFlowSubprocess, never
both. As an implicit constraint, it should never be more than one instance that is assigned to a
particular process instance.

68

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

C26 The event type that triggers a subprocess type must be different from the event type that results
from a subprocess type.

C27 Inheritance associations between subprocess types must not be cyclic.

Table 11: Comments on ControlFlowSubprocess

The meta type Event is of outstanding relevance for the specification of possible control flow struc-

tures. It is associated to many other concepts and supplemented with various constraints.

Event is instantiated into event types that form an essential part of the control
Event flow. Each event type can represent a certain event category or type. Event catego-

ries can be combined.

“Order received”, “Amount not sufficient”, “Budget exceeded”

‘ Attributes on type level

name String Serves assigning a name to an event type. The name of an event type
will usually, but must not be unique within the scope of a business

process type.

change Change Serves specifying the kind of change that causes the event, e.g. crea-

tion, deletion, modification of an object.

notification Notification Serves specifying how the responsible human or the software sys-

tem that manages a process get notified of a corresponding event.

time TimeEvent Serves specifying whether the event type is related to temporal as-

pects, i.e. to a point in time or to a time period.

isStart Boolean Allows marking an event type as representing start events.
isTerminal Boolean Allows marking an event type as representing terminal events.
loaded Boolean Allows marking an event type as loaded, i.e. as ambiguous with

respect to the related notification mechanisms. It is applicable before
concurrent paths of execution only: An event may lead to different
types of notification in the various paths of execution. It cannot be

combined with other kinds of events.

Associations

triggered_by 1,1 with BusinessProcess. On event type only can “trigger” a correspond-
triggers 01 ing business process type: the one that represents the start event.
triggers 2% with RegularSynch. A regular synchroniser within a parallel paths of
triggered_by 01 execution is triggered by two or more event types.

triggers 1% with ExclusiveSynch. An exclusive synchroniser is triggered by exactly

triggered_by 0* one event type. Since this event type represents a number of event types,

a synchronisation type (OR, AND) has to be specified (see example in
Figure 45)

69

Language Specification

2
X

triggers 1,1 with MultiSynch. A multiple synchroniser is used in cases where the
triggered_by 01 concurrent paths of execution are not modelled explicitly. It is attached to
’ a final event type that represents a possible outcome of
triggers 11 with Fork. A parallel execution is always triggered by exactly one event.
triggered_by 0,1
triggers 0,1 with ControlFlowSubprocess. A subprocess type is triggered by zero or
triggered_by 01 one event. If it is not triggered by an event, it is triggered by a fork.
placed_after 0,1 with WhileStart. The beginning of a “while” iteration is placed before
placed_before 11 exactly one event type.
represents 1,1 with Branch. An instance of Event, i.e. an event type, can be associated
represented_by 01 with an instance of Branch to represent a branching decision.
placed_before 2% with EventMerger. Two or more event types can be connected to an event
placed_after 01 merger, if they represent alternative paths of execution.
placed_before 1,1 with IterationStart. lterationStart is an abstract concept that is specialised
placed_after 01 into N_Start and RepeatStart, which represent the beginning of a “for”
’ loop and a “repeat until” loop respectively. Each of them is placed after
exactly one event type.
placed_after 0,1 with ProcessMerger. After two subprocess types that belong to alterna-
placed_before 01 tive paths of execution have been merged using an instance of Process-
' Merger, this will always result in a subsequent event type or in a branch-
ing.
produced_by 0,1 with ControlFlowSubprocess. An event will usually be produced by a
results in 01 prior subprocess (if it is not part of an iteration or a branching) and will .

‘ Constraints

BusinessProcess comprises all elements that constitute the corresponding process type. It is, how-

ever, sufficient to link it to the start event only.

Q

A start event type must not represent a Branch.

9]
o

A terminal event type must not trigger anything.

Q

An event type must not trigger more than one subsequent element at a time.

An event type cannot represent a terminal and a start event at the same time.

There must be no more than one start event type.

Q @) Q)
© © oo ~ ($)]

There has to be at least one terminal event type within a business process model.

Q
N
=)

An event type can be marked as loaded only, if it is placed before a fork.

Table 12: Comments on Event

70

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

5.3 Concrete Syntax

While regarded as irrelevant “syntactic sugar” by some, the graphical notation featured by a DSML
will often be of pivotal relevance for its acceptance and usability. The graphical symbols that form the
concrete syntax of the OrgML were created by a graphic artist. They are aimed at both, promoting
readability and appealing, aesthetic diagrams. Currently, the graphical notation exists in two variants,

“matt” and “glossy”. Table 13 shows a complete dictionary of all notation elements in both variants.

Process Symbols

matt glossy Description
< OrgUnit > < OrgUnit > Business process type — represents instances
of BusinessProcess
g o e
Name Name
< OrgUnit > < OrgUnit > serves to represent subprocesses, the type of
> which is not specified. A subprocess ID can
be represented as an optional supplement, as
D D well as a box including minimum, maximum
Name Name
i 3.30 i 3.30 and average execution times. This additional
max: 6.20 max: 6.20 information can be assigned to any subpro-
ave: 4.10 ave: 4.10 cess type.
< OrgUnit > < OrgUnit > Manual subprocess — represents instances of
— ControlFlowSubprocess the type of which is set
] to #manual.
Name Name
< OrgUnit > < OrgUnit > Automated process — represents instances of
— ‘ = ControlFlowSubprocess the type of which is set
s | —
=a =
= = to #auto.
Name Name
< OrgUnit > < OrgUnit > Semi-automated process — performed by a
%% % human actor with computer support
Name Name
L Aggregated process — serves as a placeholder
—r—> .
of a part of a business process
Name Name

71

Language Specification

< OrgUnit > < OrgUnit > External process — is being executed by an
m' > external organisation. The handshake symbol
= can also be combined with specific types of
Name Name
subprocesses, e.g. automated processes.
Table 13: Elements of the Graphical Notation: Process Symbols
START STOF
Start/Stop cror
Change not specified new modified deleted
Time time interval point in time
O
L
=
Notification: asynchronous, | asynchronous,
synchronous .
a Y N—
! 7
== Qe (o | TF U
V. v,
] =
Notification: publish poll
Software
SN oas
\VJ

72

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

&

loaded

Table 14: Symbols to Represent Events (upper Symbol: “matt”, lower Symbol: “glossy” Variant)

Events can be differentiated in various ways: with respect to the kind of change they represent, with
respect to a point in time or to duration and with respect to notification (see Table 14). The symbol at
the top of each box represents the matt variant, the symbol at the bottom the corresponding glossy
variant. Each event type is assigned a name that is presented below the event. In addition to that, an
event type can be characterised as start or terminating event. In the current version, the combination
of symbols as it is proposed in Figure 3 has not been implemented, because so far we have no suffi-

cient evidence that it is required.

Symbols that represent exceptions are placed on top of a symbol that represents a subprocess (see Ta-
ble 16). Table 15 shows the various symbols for representing exceptions, the matt variant on top, the

glossy variant at the bottom.

al 2 o

Effect not specified resume cancel

A 0 A
Y &

@

Cause time out human action technical failure
& &
NV Q
Detection Automatic very likely by chance

B

;@-c (4

Table 15: Representation of Exceptions (upper Symbol: “matt”, lower Symbol: “glossy” Variant)

Symbols to represent effect, cause and detection can be combined, resulting in 27 different combina-
tions. Table 16 shows a few selected combinations in the matt variant.
73

Language Specification

Description

matt

glossy

Cause: Human (customer)

action
Detection: very likely

Effect: cancel

Customer denies

v

- -

<Sales Assistant >
@) %

Check Credibility

Customer denies

WA/
H%’

<Sales Assistant>

Check Credibility

Cause: technical failure
Detection: very likely

Effect: resume

Connection fails
vy

<Procurement>
@]

Search Products

Connection fails

&

<Procurement>

Search Products

Cause: Time out
Detection: automatic

Effect: cancel

Time out

<Customer>

o

ma[][[]

Record Order

Time out

o2,

< Customer >

]

C 1
—
=

Record Order

Table 16: Representation of Composed Exception Types

Table 17 illustrates the representation of branchings. It is the same for both variants of the notation.

Branching

Description

matt

e

=]

A branching is attached to a
subprocess symbol. It starts
with a circle which serves to
represent further infor-
mation about the type of
decision. In the given ex-
ample, no decision type is
specified. A branching con-
sists of two or more branch-
es represented as edges,
each of which results in an

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

glossy - event. Each branch can be
- assigned a probability

which is represented in a

01
L i / grey box. Furthermore, an
&’ optional comment can be

represented between the

;\ﬁ edges.

Decision Types ‘
made by | not specified human machine human, clear rules
matt 0 @ @

glossy -~ O & &

Merging
matt The merger symbol is used to

r.—_' combine two or more alternative
o paths of execution (branches) into
%% one common path. There are two
options: The merger symbol can
follow two or more events. In this
[:’ case, it will be followed by a sub-

process symbol. Also, it can fol-
low two or more subprocesses. In

@
%% this case, it will result in an event.

glossy

Language Specification

Table 17: Representation of Branchings and Mergers

Executing paths of a business process in parallel is represented by a fork symbol that marks the be-
ginning of a parallel execution. Finally, all parallel paths have to be synchronised using either an

“And” or an “Or” synchroniser. The fork symbol is the same for both variants of the notation.

Parallel Execution

Fork Description

%% The fork symbol follows and event and

results in two or more parallel subprocess-
es. There is no difference between the matt
and the glossy version.

— &

Synchroniser, AND

matt All connected paths need to terminate to
complete the synchronisation.

76

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

glossy
S—1Gf >
Synchroniser, OR
matt As soon as one of the connected paths ter-
minates the synchronisation is complete.
glossy
OG>

Table 18: Representation of Synchronisers

77

Language Specification

Iterations

Iteration by conditional return Description
matt :_ A generic iteration structure is character-
|
: o -1 | ised by a branching that allows for either
14— ‘ going back and repeating or terminating

the iteration. It corresponds to the “re-
peat until” loop, which makes it redun-
dant.

glossy Fm——————————————————— .

Repeat until

—— e — 4

, The “repeat until” symbol is followed by
an event or a branching. If the event fires

|
|
' Q
|
=1 Gﬁ% — a7 | (or one of the events that are part of the
branching), the iteration terminates.

matt

—— e e —

glossy

While

matt The “while” symbol is placed at the be-
ginning of the iteration structure before
v ! a subprocess symbol. The condition that
& Q ! serves to control the “while”-loop is in-
- directly specified by the subsequent
event or branching: It the negation of the

78

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

_______________ E=y] condition that fires with the event or the
|

! <A> negation of the disjunction of conditions
' within a branching. Different from a

“repeat until”-loop the condition is
checked before the first execution of the
iteration body.

1 _______________ 1
glossy J !
Tl —-%
<A> <A>
For-loop
matt The “for loop” symbol is followed by an
________________ . event or a branching. The number in the
: | box below the iteration symbol is repre-
: @) sented either by a constant or a variable.
["__l—¢— %% n —[:’ It determines the number of iterations.
glossy

Table 19: Representation of Iterations

The language includes a few advanced concepts, i.e. concepts that are not expected to be required

within regular patterns of reuse.

79

Language Specification

Multiple Concurrent Instances

Sometimes the actual number of parallel paths within a parallel execution may vary. In this
case, the regular representation pattern does not work anymore, since it requires represent-
ing explicitly all possible paths of execution. To overcome this limitation, the representation
of multiple concurrent paths can be abstracted to one path that is assigned numbers (either
constants or variables) that define the number of parallel paths. The respective numbers are

placed above the fork and over the synchroniser symbols that mark the end of the parallel

execution.
< %rgUnlt >
AND,
< OrgUnit > Name
El o . Name
matt Name i}i ,
Name < OorgUmt >
ot
Name N
ame
glossy L] a] O
/\

4
g

T e

e
AN

q
&

Table 20: Representation of Variable Number of Concurrent Instances

Relaxed Concurrency

As a default, two concurrent paths of execution are independent. In cases, where they may
be partially dependent, the MEMO OrgML offers the concept of relaxed concurrency, indi-
cated by a square instead of the regular fork symbol. Dependence between two parallel paths
of execution is indicated by an exception symbol that is assigned — through a dotted line - to
all paths that are affected. The exception corresponds to an event created in one path. There-

fore the exception has to have the same name as the corresponding event.

A further aspect of relaxed concurrency relates to synchronisation: It may be that the validity

of one path depends on the status of another path. If one path terminates, this may cause the

termination of all other paths. Such a situation can be expressed with an “exclusive synchro-

80

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

nisation” symbol — an “x” in the regular synchronisation box.

matt

»

"XII

—§ =

]—o
i
”Xll

glossy

I8

-
N

S ‘><

n

Table 21: Relaxed Concurrency, Concurrency Exception and Exclusive Synchronisation

81

Language Specification

Synchronisation Exception

A parallel execution may include many paths with multiple possible synchronisers. If only a
subset of all possible synchronisers is relevant for the vast majority of process instances, the
complexity of a corresponding graphical representation can be reduced by representing the
relevant synchronisers only. To avoid underspecification, a synchronisation exception can be
used that defines how to synchronise in those cases that are not explicitly covered. The ex-
ception symbol that represents a synchronisation exception is connected to the symbol that
represents the subprocess that will be triggered after the corresponding synchronisation. The
below example that corresponds to the one in Figure 40 includes constellations, the explicit
synchronisers do not cover, which would result in firing the synchronisation exception
which is represented at the top of the figure. The example is shown in the “matt” (top) and

the “glossy” version (below).

-

82

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Table 22: Representation of Synchronisation Exception

Arbitrary Sequence

An arbitrary sequence is represented by an unspecified subprocess symbol and a stack of
small process symbols on top. Each of the process symbols represents a subprocess. Each
subprocess is assigned a name. In this representation, subprocesses cannot be distinguished
with respect to their type (e.g. “automated”, “manual” etc.). The symbol for “partially arbi-
trary sequence” includes arrows that indicate a temporal order of execution. The subprocess,
the arrow starts at, has to be performed before the subprocess, the arrow points at. The sy-
graphical representation of partially arbitrary sequence is illustrated on the right, the graph-

ical representation of the arbitrary sequence on the left.

83

Language Specification

matt > check blood pressure
[—> perform x-ray [.—> perform x-ray
[——> take blood sample [~ take blood sample
[perform audiometry [—> perform audiometry
glossy

[> check blood pressure
> perform x-ray > perform x-ray

> take blood sample take blood sample
> perform audiometry > perform audiometry

Table 23: Representation of Arbitrary Sequences

Composition/Decomposition

The main purpose of business process modelling is the specification of control flows. How-

ever, in some cases, it is sufficient to aim at a function abstraction only. A common approach
in this respect is to create process composition/decomposition diagrams. For this purpose, a
composition/decomposition relationship between processes is required. A composed process
is represented by the same symbol that is used for representing aggregate processes. It can be

decomposed into further composed processes or — finally — into a subprocess.

matt D{g}-

maf][](]

==

+

e .=

Table 24: Process Composition/Decomposition

84

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Process “Specialisation”

Business process types can be “specialised” into more specific types. Accordingly, subpro-
cess types can inherit certain features to “specialised” subprocess types. Both cases are repre-

sented by the same arrow that points at the super concept.

glossy

= e W
=S

|

== i

== T

Table 25: Symbols for Representing Process Specialisation

Associations between Business Processes

Similarity Description

matt Serves to indicate that two busi-
ness process types are similar.
Since no formal specification of
=== =il similarity is provided, an addi-
tional comment should clarify the
criteria the associated business
process types have in common.

glossy

85

Language Specification

supports
matt Serves to indicate that one busi-
ness process type somehow sup-
ports another business process
=l ———r == type, e.g. by providing its in-
stances with relevant resources.
glossy
may trigger
matt Is used to indicate that an in-
stance of one business process
e = . .
s type may trigger an instance of a
further business process type.
glossy
compete
matt Serves to indicate that the associ-
ated business process types com-
pete for resources.
glossy

Figure 49: Symbols to represent associations between business process types

86

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Assigning Tasks

matt # [u] Taskl & O Task symbols can be assigned to
¥ Tosk2 = subprocess types to provide in-
formation about the execution of a
subprocess. This is a functional
abstraction only that does account
for the control flow of performing
tasks. The name of a task that is

optional is set in italic. In addition
7 B o) Task 1 to the name, further optional

[(7 Task2 0 & characteristics of a task can be
specified such as one or more me-
dia that are used within the task, a
level of complexity (“low”, “me-
dium”, “high”) and a temporal

duration (“short”, “medium”,
“longer”).

glossy

Table 26: Assigning Tasks to Processes

Comments and Constraints

matt ‘ Cc1 ‘ ‘ Cc1 A comment can be assigned to any part
<Comment> of a diagram. It serves to provide a de-
scription/explanation to foster an ade-
quate understanding of a model. It can

be connected to the respective part of a
diagram through a dotted line. If there
is space enough, the box that includes

glossy

Cl the comment can be attached directly.
<Comment> Otherwise, one may attach the key only
and refer to a separate representation of

the comment. The key comprises of a
“C” for “Comment” and an additional

integer.
mat
<Constraint> A constraint serves to reduce ambigui-
ties within a model, i.e. it reduces the

range of permissible interpretations. In
an ideal case, constraints should be

specified using the OCL or some other

formal language. However, if at a cer-

87

Language Specification

glossy E tain point in time a formal specification
<Constraint> is not an option, a constraint can be de-

fined using a natural language expres-

sion as well. If there is space enough,
the box that includes the constraint can
be linked to the part of the diagram it
applies to directly — again through a
dotted line. Otherwise, one may attach
the key only and refer to a separate rep-
resentation of the comment. The key
comprises of a “C” for “Constraint” and

an additional integer.

Figure 50: Comments and Constraints

Connectors

Often, diagrams reach a size that does not fit onto a page of a certain medium anymore. In
this case, a connector can be used. A connector can replace any element of a diagram. Its

number serves to identify the related part of the diagram that is shown on a further page.

Ly — o

glossy .

matt

Figure 51: Connector

88

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

6 Examples

The following examples illustrate the use of the MEMO OrgML for modelling business processes
through various small case studies. The diagrams were created using both the “matt” and the “glossy”

notation. Some examples are supplemented by a modified variant that omits the use of events.

6.1 Business Process Map

On a high level of abstraction, a business process map can be used to give a “ballpark view” of a com-
pany’s business process types. On the one hand, it allows for illustrating relationships between busi-
ness process types. On the other hand, it can be used to represent features that are characteristic for a
selected process type or for comparing business process types with respect to certain features. Figure

52 shows an example business process map with additional information on one selected process type.

core process true

instances per month | 460

average revenues € 1.560.-
revenue variance high
average duration 2 days
duration variance medium
competition high
customer satisfaction | low
_ 7
-7 =]
Sales>
<Sa .
& <IT Service> 7 <Customer Service> =
Order Management Technical Support Complaint Handling
Product A Product A
<Sales> .
sales> 7 <Customer Service>
= =
<Sales> A D{gl-
Order Management e Complaint Handling
Product B
Customer Akquisition Prodyct B
<Sales> % <Customer Service> &

R = —— e

Order Management Complaint Handling
Product C Product C

Figure 52: Business Process Map

89

Examples

6.2 Process (De-) Composition Diagram

A process composition/decomposition diagram serves to illustrate function composition of processes.
It may be useful in cases where control flow aspects can be faded out. To support analysis, the process

symbols could be supplemented with performance symbols or with references to organisational units.

e

Sales
E3
*F@ CheSee 44 e
Akquisition Contracting Transaction
e G
Product Calculate Price Delivery
Presentation

& o

Bidding Negotiation Transaction
Product Demo Finalize Contract

Figure 53: Illustration of Process (De-) Composition Diagram

6.3 Process Inheritance Diagram

A process inheritance diagram allows for representing specialisation relationships between subpro-
cess types. They are based on a relaxed conception of specialisation that is restricted to inheriting tasks
(which may be related to positions) and methods (which have to be associated with a class). Therefore,
manual subprocesses must not inherit from automated subprocesses — et vice versa. Process inher-
itance diagrams can be helpful with respect to maintaining larger collections of business process types
that share similar subprocesses. Designing inheritance diagrams should be done with great care: Only
if an inheritance relationship is regarded as invariant, it should be introduced as such. With respect to
safe and convenient maintenance of business process libraries, process inheritance diagrams represent
only an intermediate step. After a task in a super subprocess type was added or changed, the affected
business process types have to be detected and accordingly updated. The semantics for automating

these operations has not been defined yet.

90

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

Gof

Review Offers

na[l[[

Create Billing
Document

V4
O
—

Assess Offers

—>

mof][][]

=

Create Delivery

Assess and select
Note

Offers

Create Invoice

Figure 54: Illustration of Process Inheritance Diagram

6.4 Order Management

Order management serves as a classical example for business processes. The first case represents an
order management process with a company that sells printers. The product line ranges from low
budget printers that are sold at less than € 100 a piece to high performance printers with a price tag of
€ 5.000 and more. During the last months the number of customer complaints has increased. There-

fore, the current process is to be analysed and — if necessary — revised.

6.4.1 Current Process

Figure 55 shows the current situation at a glance. If execution time is a core objective, this solution
may be unsatisfactory, because it requires sequential testing of availability and delivery capability.

The diagram also illustrates the use of comments and the representation of tasks.

91

Examples

STOP

<Sales Assistant>

Order denied

Ci

Credibility
insufficient

It may be more appropriate

Inform Customer to inform the customer first.

<Sales Assistant>

<Sales Assistant>

Amount not
available Deny Order for

Availability Reasons

Order Eeceived
Check Credibility

<Sales Assistant>

<Sales Assistant>

T G e

Credibility ok Check Availability

Delivery date

Deny Order for Order denied
not possible

Delivery Reasons

<Logistic Assistant>

<Sales Assistant>

Amount available Check delivery

Delivery date

possible Confirm Order Order confirmed

¥ calculate volume and weight &0
[# [&) call shipper =&
[enter freight cost 5" @

Figure 55: Existing Order Management Process

6.4.2 Alternative Version

The alternative version puts emphasis on reducing execution time by defining the parallel execution
of both tests. It comes with the downside of increasing costs. The frequency of denials and the priority
of process goals (cost reduction vs. reduction of execution time) have to be accounted for to make an
appropriate choice.

sToP

< Sales Assistant >

\/
| ﬁﬁ% @Aer reected

Credibility
insufficient Inform Customer

Q g
Order - < Sales Assistant > Amount not < Sales Assistant >
received Check credibility e g o
— %% e AN £ V
Order denied
Check availability Deny order
AN ™~

r'—_’ = Amount

available

Credibility ok

<Sales Assistant >

g STOP
~ AN = __v
) Order
< Logistic Assistant > Delivery date Confirm order

confirmed
fi g not possible
Check delivery \

Delivery date
possible

Figure 56: Alternative Design of Order Management Process

92

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

6.5 Procurement (ECOMOD)

The following examples result from the research project ECOMOD that was aimed at designing and
documenting reference business processes for electronic commerce. Originally, they were designed in
a previous graphical notation. The example in Figure 56 shows a high-level representation of a pro-

curement process that includes various aggregated processes.

< Purchasing >
Simple Pricing
(static)

atic pricing chosen

< Purchasing > < Purchasing >

\“_—’—

Requirement
pecification given

START < Purchasing >

Wigre.

Determine specifiability o

Purchase purchase demand

™

& o

Determine appropriate
pricing mechanism

English Auction
chosen

Demand bundling
chosen

D—

o=l

English Auction

< Purchasing >

===

Demand bundling
(product catalogue)

STOP

>

necessary
Purchase order
placed
< Purchasing >

Tender to contract

Demand notice
unspecified

Figure 57: High-Level Process

This process shown in Figure 57 aims at evaluating a number of given offers. The evaluation process
starts with determining the number of responsible persons. This list of persons is assumed to be de-
rived automatically, e.g. on basis of the price or the type of the product. A workflow supporting sys-
tem subsequently determines the first person to evaluate the offer. After his evaluation the next per-
son is determined automatically. This process is repeated as long as there are other responsible per-
sons on the list. When all evaluations have been performed the final evaluation is determined, which

can result in one offer selected or in no appropriate offer found.

93

Examples

START < Purchasing >
5]
Determine responsible
Number of offers selected persons List of responsible persons
1
| |
| |
| |
: < Purchasing > < Purchasing > @
I L K =
W —F——f——=—
Evaluation of offers Select further responsible
Offers evaluated person All evaluations performed
STOP

< Purchasing >

gt o

Derive final evaluation of STOP
offers

One offer selected

No appropiate offer found

Figure 58: Multi-Person Evaluation of Offers

Figure 59 shows a traditional business process where a customer order is processed widely manually.
It is a variant of the example in Figure 55.

94

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

E

Customer

<Distribution> identified
Hﬁ-} —
Customer Check for ustomler
order existing <Dlstr|but|on> data valid
received customer

Customer data
not given Enter
customer data

Customer
data invalid

<Distribution>

i

Order data

Order

lausibl Confirm recorded
<Distribution> plausible order data
Enter order
data <Distribution>
Eﬁ Order
Oll'der'glot Contact customer changed
plausible and request order
changes

Figure 59: Manual Order Entry

6.6 “Light” Notation

Events have an important function for defining the control flow. However, representing them explicit-
ly increases the size of a corresponding diagram and may thus contribute to reducing its comprehen-
sibility. Therefore, business process diagrams could also be represented without events — except for
the start event and the terminal event(s). Such a “light” version of the notation has not been imple-
mented yet. It would not require changing the meta model. Instead, a model editor would have to
implement a “light” drawing mode, where intermediate events would be included implicitly and
would not be shown. If required, names of event types could be assigned to the edges that replaced
event types. This would make particularly sense in the case of branchings. Figure 60 and Figure 61

illustrate how the diagrams shown in Figure 55 and Figure 56 would look like in the “light” notation.

95

Examples

STOP

<Sales Assistant> Order denied

<Sales Assistant> Inform Customer <Sales Assistant>

Order received
Check Credibility

Deny Order for
Availability Reasons <Sales Assistant>

Deny Order for Order denied
Delivery Reasons

<Sales Assistant>

Order confirmed

Confirm Order

Figure 60: "Light" Notation - Example Diagram 1

STOP.

< Sales Assistant > ; ;
o) .
G Order rejected
% I Yo,
%.

Inform Customer

\ / @ 4»‘;\\’3o
‘\0\3
. .
Order - < Sales Assistant > «\o\"\ <Sales Assistant >
received Check credibility o g X Q sTop
— e Y
A4, Order denied

/)’01,,” Deny order

Check availability

< Sales Assistant >

g sTop
AN 5 — v
. . i d Order
< Logistic Assistant > Confirm order confirmed

TN

%
. e
Check delivery ’1’%’
Do
Q]

Figure 61: "Light" Notation - Example 2

It will be one topic of our future research to analyse under which conditions it is preferable to do

without the explicit representation of intermediate event types.

96

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

7 Evaluation of the MEMO OrgML

The evaluation of a linguistic artefacts is a specific challenge (for a discussion of particular problems
see Frank 2006a). It may seem plausible to aim at an empirical evaluation: A DSML is supposed to be
an instrument that should serve its prospective users as a tool. An empirical test could be used to find
out, to which extent this is the case. However, an empirical investigation of languages faces serious
obstacles. Empirical studies that go beyond looking at small cases are usually not feasible, since they
would require introducing modelling tools and training a substantial number of representative users.
Even more important are epistemological problems: The benefit to be expected from a language de-
pends on previous experience, attitude —i.e. the linguistic predetermination. In addition to that, it may
take time for prospective users to learn and appreciate (or dislike) a language. Most of the correspond-
ing factors are highly contingent, which makes it almost impossible to develop a clear evaluation
based on an empirical study that is restricted to a point in time (for a more comprehensive discussion
see Frank 2006b, p. 22 ff.). Nevertheless, it is certainly useful to test a DSML with possible users — to
get a better idea of how they perceive it, whether the level of detail seems appropriate etc. We per-
formed tests like that during the last years with our students and they have contributed to the devel-
opment of the MEMO languages. However, they are hardly sufficient for evaluating the language. The
evaluation we performed is based on the requirements, the OrgML should satisfy (Frank 2011b). It
includes both, the part of the OrgML intended for modelling organisational structures (Frank 2011c)
and the part on process modelling presented in this report. For some of the requirements, it can be
decided with substantial confidence whether they are satisfied or not. The fulfilment of other re-
quirements depends on contingent factors, i.e. it cannot be determined without accounting for further
detail. The degree to which a requirement is satisfied is expressed with the symbols “+” (satisfied), “0”
(satisfied to some degree) and “-“ (not satisfied). The symbol “c” (contingent) indicates that the fulfil-

ment of a requirement depends on contingent factors.

ID Requirement Comment

F1 | The specification of a modelling language should + | The abstract syntax and semantics of
include a precise and complete specification of its the DSML are specified in the meta
syntax. In an ideal case, this will be a formal specifi- model and additional formal con-
cation. In any case, the syntax specification should straints.

allow a human to clearly decide whether a specific

model is syntactically correct or not.

F2 | In order to support the implementation of corre- + | The MEMO MML accounts for the
sponding modelling tools, the specification language semantics of prevalent programming
should correspond to languages used for software languages.
design.

F3 | The rules defining the semantics of a modelling lan- | o | While elaborate definitions of the

guage should be suited to clearly guide prospective core language concepts of the lan-

97

Evaluation of the MEMO OrgML

users with the construction of appropriate models
and their adequate interpretation. These rules
should be formalised, if this does not compromise

the intended meaning.

guage are provided, there is still a
certain degree of freedom of how to
apply them to develop models of or-

ganisation structure.

F4 | The modelling language should feature concepts There are only a few high-level con-
that foster a high level of abstraction to support cepts that can be used to foster model
model integrity and reuse. integrity, e.g. defining the max. num-

ber of levels. In addition to that,
common auxiliary types promote
integrity and reuse. The language
lacks further abstraction concepts
such as generalisation/specialisation.

U1l | The concepts of a modelling language should corre- The language design was guided by
spond to concepts prospective users are familiar existing terminology. However, since
with. That recommends reconstructing existing ter- the terminology is not used in a uni-
minology. Furthermore, it recommends using graph- form way, there may be users who do
ical symbols that are suited to illustrate the corre- not feel familiar with the concepts at
sponding concepts” meaning. first. The expressiveness of the graph-

ical notation has been subject of vari-
ous revisions. Nevertheless it cannot
be expected to be perceived homoge-
neously be different groups of users.

U2 | To overcome the conflict between convenience of use Using core concepts such as Organi-
and simplicity, a language should provide a core of sationalUnit, Position and “is part of”
basic concepts that are sufficient for creating simple relationships will be sufficient to cre-
models. ate simple models

U3 | The modelling language should allow for building Organisation models can be built on
models on various levels of detail and abstraction. A different levels of abstraction and
modeller should not be forced to specify detail he detail, e.g. by using or omitting local
does not need. types or by using categories. Fur-

thermore, composi-
tion/decomposition can be used. Also,
it is up to the user to add further de-
tails, e.g. by using text boxes. Howev-
er, there are no further abstraction
concepts such as generalisa-
tion/specialisation (see F4).

A1l | A modelling language should provide domain spe- This requirement has been checked

98

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

cific concepts as long as they are regularly used and
their semantics is invariant within the scope of the

language’s application.

for all concepts of the language. In
some cases, further evaluation is re-

quired.

A2

The concepts of a language should allow for model-
ling at a level of detail that is sufficient for all fore-
seeable applications. To cover further possible appli-

cations, it should provide extension mechanisms.

During requirements analysis a re-
markable range of possible applica-
tions has been accounted for. Howev-
er, apart from the difficulty to deter-
mine all foreseeable applications, the
language currently does not allow to
model position instances, which may
be required by some. It does, howev-
er, include an extension mechanism

(“local types”).

A3

A modelling language should provide concepts that
allow for clearly distinguishing different levels of

abstraction within a model.

Currently, the OrgML does not allow
for expressing clearly different levels

of abstraction.

A4

There should be a clear mapping of the language
concepts to the concepts of relevant target represen-
tations. In an ideal case, all information required by
the target representations can be extracted from the
model. That requires that the concepts of the lan-
guage allow for expressing all concepts of relevant

target representations.

Since the MEMO meta modelling
language accounts for the semantics
of prevalent programming languages,
generating code from, e.g. for an or-
ganisational information system, a
model can be based on a clear map-
ping. Also, marking attributes with
“derivable” or “obtainable” guides a
subsequent mapping to implementa-

tion languages.

Table 27: Generic Requirements for DSML

1D Requirement

OM1

The language should include concepts to describe
organisational structures and business processes
on various levels of detail. It should also feature
concepts that support specific analysis and design

tasks (corresponds to requirement U1).

(o}

Comment

The level of detail can be adapted to
particular modelling purposes — by
adding or leaving out optional fea-
tures. The range of scenarios account-
ed for during requirements analysis
comprises various analysis and de-

sign tasks.

OoM2

Requirement OM2: The modelling language

The existing technical language was

99

Evaluation of the MEMO OrgML

should be aimed at reconstructing the technical
language used in organisation analysis and design.
This requirement is a specialisation of the generic

Requirement Ul.

the starting point for designing the
language. In addition to that, “local
types” allow for representing specific

aspects of local terminologies.

OM3

The OrgML should include concepts of other mod-
elling languages to support references to respective
models. This requirement applies especially to

other languages used for enterprise modelling.

In the given specification, only a few
concepts, e.g. “Class” or “Method”,
are accounted for. However, further
concepts can be added easily. Also,
other language specifications within
MEMO include concepts of the
OrgML.

OM4

The OrgML should support all of those known
control structures that are relevant for the purpose

of the language.

While completeness cannot be prov-
en, the current set of control struc-
tures is comprehensive with respect
to the scope of relevant use scenarios
and given catalogues (such as Van
der Aalst et al. 2003).

OM5

The OrgML should allow for detailed references to
models used for systems analysis and design. It
should provide mappings to relevant workflow

specification languages.

This feature has been demonstrated
for a previous version of the OrgML

already Jung 2004.

OMé6

The OrgML should include concepts that allow for
assigning model elements to different organisa-
tions/enterprises and to express relevant patterns

of communication and cooperation.

The OrgML allows for assigning or-
ganisational units to different organi-
sations. It also allows assigning dif-
ferent organisations to business pro-
cesses or parts of business processes

respectively.

OoM7

While the specification of the language should
avoid conceptual redundancy, reoccurring model-
ling patterns should be represented by specific
model elements — if they promise to improve

productivity and readability.

Respective concepts are not provided
for modelling organisation structures.
The process modelling part of the
language provides various concepts
of this kind, e.g. iterations, synchroni-

sation exceptions etc.

OMS8

The OrgML should include concepts that allow for
specifying business process models which include

information required for running simulations.

The concept PrototypicalPosition al-
lows for representing positions for
simulation purposes. Apart from that,
simulation depends on correspond-

ing features of further modelling lan-

100

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

guage such as the ITML or the ResML

Table 28: General Requirements for Organisation Modelling

ID Requirement

SR1 | To allow for elaborate analyses, it should be pos- The language offers a wide range of
sible to describe organisational units in a differen- respective features.
tiated way. This includes concepts to describe
formal qualification, skills, tasks, responsibilities
etc. as well as different kinds of associations be-
tween organisational units.

SR2 An organisational chart represents organisational Currently, organisational units are
units. These may be types or instances. Therefore, instances of meta types. Hence, from
the OrgML should provide concepts that allow a formal perspective, they are types.
for both, defining organisational units as types However, often they will be treated
and as instances. as instances. At the same time, the

language allows for assigning in-
stance-level features, e.g. through the
use of intrinsic features.

SR3 Sometimes, certain assertions do not only apply Categories can be used for expressing
to one type of organisational unit (or role or certain kinds of commonalities. How-
committee), but to more. It may be, for example, ever, the OrgML does not provide
that various organisational units are assigned to a more elaborate concepts such as spe-
certain region. To elegantly specify such com- cialisation.
monalities, there is need for concepts that allow
for expressing abstractions over a set of organisa-
tional units (or roles and committees respective-
ly).

SR4 With the increasing spread of cross-organisational This requirement corresponds widely
networks, joint ventures etc., it becomes more and to OM6.
more important to account for modelling struc-
tures that include more than one legal institution.

Therefore, the OrgML should provide concepts
that allow distinguishing between different or-
ganisations.
SR5 | While some organisational units will usually oc- The qualification required for filling a

cur only once within a particular enterprise, oth-

ers — this is typically the case for positions — can

role can be expressed by assigning

the positions that may serve as a pre-

101

Evaluation of the MEMO OrgML

exist in multiple instances of a certain type. First-
ly, there is need to allow for differentiating be-
tween multiplicity constraints (“There must not
be more than one marketing department.”,
“There must be one and exactly one head of the
marketing department.”) and actual numbers
(“The current headcount of the marketing de-
partment is 26.”). The notation should support a

clear differentiation of these two meanings.

requisite. In addition to that, the re-
quired qualification can be described

using corresponding attributes.

SR6 | Assigning employees to roles can be restricted to The preconditions for filling roles can
certain constraints, e.g. to the position an employ- be defined to some extend by select-
ee fills or to other roles he fills or must not fill. ing position types that qualify for a
They may also be related to specific features of an role type.
employee, e.g. his skills. The OrgML should pro-
vide concepts that allow for expressing such con-
straints conveniently. It is a specific challenge to
account for features of employees, since they are
not within the direct scope of the language.

SR7 | There may be rules, too, that define the precondi- The preconditions for joining a com-
tions for joining a committee — as well as the con- mittee can be defined by assigning
ditions that apply to terminating a membership. corresponding instances of Position-
They may be related to roles, organisational units Category or PotentialSuperior (i.e.
or other aspects. There should be concepts that instance of the concrete subtypes).
allow for expressing these rules on an appropriate Further formal constraints are not
level of detail (in some cases the specific complex- possible.
ity of corresponding regulations would exceed
the scope of an organisational model).

SR8 | Aninteraction diagram should allow for repre- Interaction diagrams are supported.
senting also other types of interaction. For exam- For this purpose, a range of interac-
ple, interactions could be enriched by referring to tion types and a corresponding nota-
occasions, resources, tasks, subjects, communica- tion is provided.
tion media etc. Furthermore, the OrgML should
provide concepts that allow for representing
cross-organisational interactions. To adequately
represent these various kinds of interactions, it
will be required to make use of different kinds of
diagrams/tables.

SR9 | It should be possible to supplement the set of The current support for adding anal-

predefined analysis features (“critical perfor-

ysis features is restricted to modify-

102

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

mance” etc.) with additional user defined fea-

ing corresponding auxiliary types.

tures.

SR10 | It should be possible to assign every process with- Currently, it is possible only to assign
in a decomposition diagram to one or more busi- a subprocess type to one superior
ness process types, it is part of. composed process only. This re-

striction is for a serious reason: Reus-
ing subprocess types in different con-
texts would require to abstract on a
core of a subprocess type that is in-
dependent from its context, e.g. from
the surrounding event types.

SR11 | There should be specific graphical notations for Corresponding symbols are available.
business process types and decomposable pro-
cesses to distinguish them from other processes.

SR12 | There should be concepts that allow for describ- Since ComposedProcess is special-
ing features required for various kinds of analysis ised from AnyProcess all correspond-
to be performed on decomposition diagrams. This ing features are available.
includes assigning the resources that are required
by every process in order to analyse potential
conflicts.

SR13 | There should be concepts that allow for assigning Probabilities can be assigned.
probabilities to alternative paths of executing a
business process. This requirement corresponds
to OMBG, since it is a prerequisite for running sim-
ulations.

SR14 | Many business process types are characterised Exceptions are supported. In addition

through a default flow of control. In certain, rare
constellations, alternative flows of control need to
be activated. However, modelling all possible
constellations can result in all too complex repre-
sentations that are difficult to understand and
that distract from the essential flow of control.
Therefore, the OrgML should provide the concept
of an exception which is used to model unusual
flows of control only. This requirement corre-
sponds to F3, because an exception is an abstrac-
tion. It also corresponds to requirement OM?7,

because it allows for representing reoccurring

to that, a special kind of exception, a
synchronisation exception, is provid-

ed, too.

103

Evaluation of the MEMO OrgML

modelling patterns in a more readable fashion.

SR15 | Business processes are usually information inten- The flow of information through a
sive processes. Hence, for analysing and improv- business process is widely abstracted
ing their efficiency, the flow of information is of from. Event types can be used to ex-
pivotal relevance. There are numerous ways how press certain aspects of information
information can be transmitted through a busi- flow. Furthermore, assigning meth-
ness process. Therefore, the OrgML should pro- ods of classes to subprocess types
vide concepts that allow for the differentiated also allows to express information
description of the information flow. flow aspects.

SR16 | Business processes are pivotal for an organisa- Performance indicators can be as-
tion’s competitiveness. Therefore it is important signed on different levels of detail.
to evaluate and - if necessary — improve their
performance. This requires concepts that allow
for describing the performance of a process —e.g.
by comparing its actual performance against a
reference performance.

SR17 | Often, it will be important to distinguish different The language includes various differ-
kinds of processes, e.g. a process type that is au- ent kinds of subprocess types.
tomated from one that is only partially automat-
ed. The modelling language should provide rele-
vant types of processes together with a self-
explanatory notation. Furthermore, it should al-
low for defining further process types (corre-
sponds to requirement A2).

SR18 | It should be possible to express process invariants There is limited support for this re-
(similar to class invariants known from object- quirement: ObjectAllocator, Position-
oriented modelling): If, e.g., a specific resource is Allocator and RoleAllocator allow for
required for all processes of a business process, expressing that a specific instance is
this could be expressed through an invariant; thus required. However, except from us-
contributing to modelling convenience and model ing additional OCL constraints, there
integrity (corresponds to requirements require- is no way to express process invari-
ment F1 and requirement OM?7). ants.

SR19 | There should be concepts for representing data or The OrgML allows for assigning clas-

objects that correspond to concepts used in sys-
tems design. Thereby, friction between business
process analysis and systems design could be
avoided. In an ideal case, documents used for

systems design such as object models could be

ses and methods to subprocess types.
Furthermore, it is possible to distin-
guish between objects of the same

class.

104

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

generated from the representation of information

in business process models.

SR20 | It should be possible to represent different physi- This aspect of information logistics is
cal media information is stored on, such as tradi- widely faded out. It can be accounted
tional media (paper, micro fiche etc.) and various for in part through specific event
kinds of digital media. Accounting for different types.
physical media is pivotal for analysing the effi-
ciency of information allocation within a business
process

SR21 | There should be concepts that allow for express- This requirement corresponds to in-
ing different levels of formal semantics, e.g. bit- formation logistics, too, and is not
map, ASCII, structured document, class. The covered yet.
higher the level of formal semantics, the better are
the chances for processing the corresponding in-
formation automatically.

SR 22 | It should be possible to represent the information On the one hand, this feature is cov-
life cycle. This includes the creation, modification ered by corresponding event types,
and deletion of information. on the other hand, it is covered by

class methods which allow specifying
modifications.

SR23 | Sometimes, it is important to distinguish between This is possible through the use of
different instances of information objects or re- ObjectAllocator (see SR18).
sources in general — or to make sure that a certain
instance is used. Therefore, it should be possible
to assign identifiers.

SR24 | In order to support the detection of media clash- This aspect of information logistics is
es, it should be possible to represent the trans- not accounted for yet. It could be ad-
formation of information into a new representa- dressed by assigning a respective
tion. This requirement is related to requirement comment.

SR20, requirement SR21 and requirement SR22.
SR25 | It should be possible to differentiate between This advanced feature of information

value and reference semantics of data that is
transferred from one process to another. This is
important with respect to the efficiency of a busi-
ness process, since transferring values will usual-
ly be more costly than transferring references. It is
also relevant for systems analysis and design. In

general, reference semantics is preferably with

logistics is not covered. It is only
marginally addressed by assigning
methods of particular objects. Assign-
ing a method of one object to various
subprocesses indicates that reference

semantics is in place.

105

Evaluation of the MEMO OrgML

respect to system integrity. However, sometimes
- e.g. in offline-mode — it cannot be accomplished.
Transferring copies (value semantics) requires
implementing specific procedures to cater for

system integrity.

SR26

The flow of information will usually include ac-
tors such as customers, suppliers or internal em-
ployees. On the one hand, it should be possible to
represent the information that is requested or
provided by actors. On the other hand, there
should be concepts that allow for representing
communication relationships between actors, e.g.

cause, frequency, duration, media etc.

Not implemented yet.

SR27

To support analysing the economics of a business
process, it should be possible to assign the re-

sources that are required to execute a process.

This is partially possible by assigning
organisational units, roles, software,

and classes/objects.

SR28

With respect to the economics of a business pro-
cess the number (or the volume) of resources is
important. Therefore, it should be possible to ex-

press this aspect.

The ResML allows for expressing
resource allocation which could be

assigned to subprocess types.

SR29

It should be possible to specify different types of

services.

Service modelling is not covered yet.

SR30

There should be concepts that allow for defining
associations between services and between ser-
vices and other relevant concepts such as business
processes, software systems, organisational units

etc.

Not implemented yet.

SR31

The OrgML should provide concepts for specify-

ing service contracts on various levels of detail.

Not implemented yet.

SR32

The OrgML should provide concepts that allow
for specifying those features of a decision scenario
that are needed for analysing and improving its
performance. They include quality (perceived and
measured), execution time, resources (required,
actually available) and associations to other deci-

sion scenarios.

Not implemented yet.

SR33

In order to describe the path, a decision is sup-

Since concepts to describe decision

106

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

posed to take within an organisation, decision
scenarios require an appropriate combination

with business process models.

scenarios are not included yet, this

requirements cannot be satisfied.

SR34 | Different types of associations should allow for It is possible to assign organisational
assigning organisational units, roles and commit- units and positions. However, it is
tees to business process models, e.g. “in charge not possible to distinguish kinds of
of”, “supports”, “provides technical support” etc. relationships. While a corresponding

specification could be easily added,
we decided to wait until there is suf-
ficient evidence that such a feature is
actually needed.

SR35 | It should be possible to conveniently express con- Constraints on assigning instances
straints on instances of organisational units, roles can be expressed to some extend by
and committees assigned to processes. If, e.g., the using PositionAllocator.
position “Sales Assistant” is assigned to more
than one process within a business process, it
may be important to express that it should always
be the same position instance (i.e. the same em-
ployee) who is assigned.

SR36 | Referring to an organisational chart maybe re- An organisational unit can be re-
garded as helpful in some cases. In many cases, it ferred to by its name (presented on
will add to a diagrams complexity and distract top of a subprocess symbol).
from the main focus, i.e. the business process dia-
gram. Hence, the notation should allow for as-
signing organisational units without representing
the corresponding organisational chart. It should
also allow for clearly distinguishing between dif-
ferent kinds of assignments.

SR37 | It should be possible to express relevant con- Subprocess types can be assigned the
straints on the assignment of organisational units tasks they include. Also, position
or roles/committees to processes. For example: If types can be assigned tasks. There-
organisational units and roles were assigned the fore, checking for a corresponding
tasks they are supposed to perform and all pro- match is possible. There is, however,
cesses were decomposed into tasks, then a con- room for a more elaborate specifica-
straint could be applied that only those organisa- tion of tasks, e.g. by allowing for spe-
tional units etc. can be in charge of performing a cialisation or aggregation between
process that cover all corresponding tasks. task types and tasks respectively.

SR38 | In addition to a set of predefined relationship The range of predefined relationship

107

Evaluation of the MEMO OrgML

types, it should be possible to define further rela-

tionship types (corresponds to requirement A2).

types is assumed to be sufficient. If
this assumptions turns out to be
wrong, a feature for adding custom-

ised relationship types will be added.

SR39 | As far as possible, concepts for business process This requirement relates to concepts
modelling should be reused. This does not only for modelling projects, which are not
foster the maintenance of the language, it also included yet.
allows for reusing associations — e.g. to organisa-
tional units, resources, classes etc. — defined for
business process diagrams.

SR40 | There is need to account for concepts that are spe- not implemented yet
cific for project planning, e.g. to express prob-
lems, risks, challenges as well as accomplish-
ments.

SR41 | With respect to the high level of abstraction to be not available yet
expected for some project execution plans, they
should be supplemented with guidelines for “in-
stantiating” project instances.

SR42 | It should be possible to associate projects or pro- not available yet
ject phases with concepts of other diagram types
that help with analysing and (re-) designing the
project categories of a firm.

SR43 | Concepts within associated models that are re- Associations to “Class” or “Method”
ferred to need to be integrated into the MEMO- are possible. So far, instantiation and
OrgML. This includes, for instance, concepts such release associations are not provided.
as “Class” or “Operation”. Furthermore, there are They can be realised, however, by
concepts required that allow for differentiated associating corresponding methods
associations, e.g. “instantiate”, “release”. In order (e.g. a method within an “Object Fac-
to provide for the integration both with the tory” class that allows for instantiat-
MEMO OML and the UML, mappings to corre- ing objects of a given class.
sponding concepts in both languages need to be
defined.

SR44 | Concepts within the IT resource modelling lan- In the current specification, the inter-

guage, e.g. to describe hardware, system soft-
ware, networks, applications etc. need to be in-
cluded in the OrgML in order to allow for defin-

ing references.

face to the ITML is limited to Soft-
ware. However, it is problem to pro-
vide for a more differentiated inter-
face. The concepts required for that

are supposed to be part of the next

108

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

version of the ITML.
SR45 | Integrating OrgML models with other models The current specification includes
used within an enterprise model requires includ- some concepts of other modelling
ing all concepts of the corresponding modelling languages, e.g. “Class” or “Software”.
languages that are used for inter-model associa-
tions.
SR46 | To cope with modifications of existing modelling The current specification does not

languages and the creation of further languages,
it might be required to provide versatile linking

mechanisms on a low semantic level.

address this requirement.

Table 29: Specific Requirements

109

Conclusions and Future Work

8 Conclusions and Future Work

This report presents an essential part of the MEMO OrgML, i.e. concepts for business process model-
ling. The specification has already reached a level of complexity that many will regard as too high.
However, it is merely a reflection of the subject’s complexity: Business processes are pivotal patterns
of collaborative action in organisations. The control structures defined in the specification cover most
of the so called “workflow patterns” in Van der Aalst et al. 2003) — and go beyond those in part. Nev-
ertheless, the current specification represents an intermediate status only. This is mainly for three rea-
sons. At first, it does not account for information logistics, i.e. the flow of information through a busi-
ness process. While adding simple flow relations between subprocesses would be fairly easy to speci-
ty, such an approach would not be satisfactory. Modelling information flow in a way that allows for
elaborate analysis requires specifying different media, for distinguishing between reference and value
semantics and various other aspects. The resulting requirements create a remarkable additional com-
plexity. Therefore, I decided to consider it in an additional report. Second, the evaluation of the cur-
rent specification shows that a number of requirements have not been satisfied so far. Third, like any
other process modelling language, the current version lacks advanced abstraction concepts. For in-
stance, it is not possible to directly reuse a subprocess type in a further business process model — even
though a relaxed conception of process inheritance provides support for reuse. Therefore, there is
need to further develop the current state of business process modelling by adding abstraction con-
cepts that foster safe and convenient reuse of model elements. Finally, the present evaluation, which is
mainly based on analytically comparing requirements against language features, should be supple-

mented by evaluations that were gained in practical use scenarios.

110

The MEMO Organisation Modelling Language (2): Focus on Process Modelling

References

ANDREWS, T., CURBERA, F. & DHOLAKIA, H. 2003. Business Process Execution Language for Web
Services [Online]. Available: http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel/ [Accessed Nov. 25th 2008].

BORGER, E. & THALHEIM, B. 2008. A Method for Verifiable and Validatable Business Process
Modeling.

COALITION, W. M. 1996. Workflow Standard - Interoperability.

FRANK, U. 2006a. Evaluation of Reference Models. In: FETTKE, P. & LOOS, P. (eds.) Reference
Modeling for Business Systems Analysis. Idea Group.

FRANK, U. 2011a. The MEMO Meta Modelling Language (MML) and Language Architecture. ICB
Research Report, No. 43, University Duisburg-Essen. 2nd Edition.

FRANK, U. 2011b. MEMO Organisation Modelling Language: Requirements and Core Diagram
Types. ICB Research Report, No. 47, University Duisburg-Essen.

FRANK, U. 2011c. MEMO Organisation Modelling Language (1): Focus on Organisational Structure .
ICB Research Report, No. 48, University Duisburg-Essen.

FRANK, U. 2010. Outline of a Method for Designing Domain-Specific Modelling Languages. ICB
Research Report No. 42. University Duisburg-Essen

FRANK, U. 2011d. Some Guidelines for the Conception of Domain-Specific Modelling Languages. In:
NUTTGENS, M., THOMAS, O. & WEBER, B. (eds.) Enterprise Modelling and Information Systems
Architectures. Hamburg,.

FRANK, U. 2012. Specialisation in Business Process Modelling: Motivation, Approaches and
Limitations. ICB Research Report, No. 51. University Duisburg-Essen.

FRANK, U. 2006b. Towards a Pluralistic Conception of Research Methods in Information Systems
Research. ICB Research Reports, No. 7, University Duisburg-Essen.

JUNG, J. 2004. Mapping of Business Process Models to Workflow Schemata - An Example Using
MEMO-OrgML and XPDL. Arbeitsberichte — des Instituts fiir =~ Wirtschafts- und

Verwaltungsinformatik. Koblenz, Germany: Universitdat Koblenz-Landau.

OMBG. 2008. Business Process Modeling Notation. Available: http://www.omg.org/docs/formal/08-01-
17.pdf [Accessed Nov. 25th 2008].

OMG. 2009. OMG: Business Process Model and Notation (BPMN). Available:
http://www.omg.org/spec/BPMN/2.0 [Accessed 2011-11-23].

RITTGEN, P. 2000. Paving the Road to Business Process Automation. European Conference on
Information Systems (ECIS). Vienna.

111

References

RUSSEL, N., HOFSTEDE, A. H. M., VON DER AALST, W. M. P. & MULYAR, N. 2006. Workflow
Control-Flow Patterns: A Revised View. . BPM-Report BPM-06-22.

SCHEER, A. W. 2001. ARIS - Modellierungsmethoden, Metamodelle, Anwendungen, Berlin, Springer.

VAN DER AALST, W. M. P. 2002. Making Work Flow: On the Application of Petri Nets to Business
Process Management. Lecture Notes in Computer Science, 2360.

VAN DER AALST, W. M. P, DESEL, J. & E., K. 2002. On the Semantics of EPCs: A Vicious Circle. In:
M. NUTTGENS, M. & RUMP, F. J. (eds.) Proceedings of the EPK 2002: Business Process
Management using EPCs. Trier.

VAN DER AALST, W. M. P., TER HOFSTEDE, A. H., KIPUSZEWSKI, B. & BARROS, A. P. 2003.
Workflow Patterns. Distributed and Parallel Databases, 14, 5-51.

WEHLER, J. & LANGNER, P. 1998. Petri Net Based Certification of Event-Driven Process Chains.
Application and Theory of Petri Nets, 286-305.

112

Previously published ICB - Research Reports

2011
No 48 (December 2011)
Frank, Ulrich: “"MEMO Organisation Modelling Language (1): Focus on Organisational Structure”
No 47 (December 2011)
Frank, Ulrich: “MEMO Organisation Modelling Language: Requirements and Core Diagram Types”
No 46 (December 2011)

4

Frank, Ulrich: “Multi-Perspective Enterprise Modelling: Background and Terminological Foundation’

No 45 (November 2011)

Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur Er-
stellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)
Berenbach, Brian; Daneva, Maya; Dorr, Jorg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;
Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,
Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and
RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),
and the REFSQ 2011 Doctoral Symposium”

No 43 (February 2011)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture — 2nd Edi-
tion”
2010
No 42 (December 2010)
Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”
No 41 (December 2010)

Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewihlte Aspekte des Cloud-Computing aus einer
IT-Management-Perspektive — Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Biirsner, Simone; Dorr, Jorg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):
“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-
ty. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC”

Previously published ICB — Research Reports

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption fiir den Studien-
gang M.Sc. Wirtschaftsinformatik an der Fakultdt fiir Wirtschaftswissenschaften der Universitit Duis-
burg-Essen”

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschitzungen von CIOs und
WI-Professoren”

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-
ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstindnis der IT-Governance - An-
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Riingeler, Irene; Tiixen, Michael; Rathgeb, Erwin P.:”Considerations on Handling Link Errors in
STCP”

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: , Einsatz von Social Software in Unternehmen — Studie
iiber Umfang und Zweck der Nutzung”

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kiitz, Martin; Riiding, Otto; Schauer, Hanno; Strecker, Stefan:
., Leitbild IT-Controller/-in — Beitrag der Fachgruppe IT-Controlling der Gesellschaft fiir Informatik
e. V. “”

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems — Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: , Kriterien guter Wissensarbeit — Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-
iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: , Computer Aided Assessments and Programming
Exercises with JACK”

No 27 (December 2008)
Schauer, Carola: “GrifSe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universititen im
deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Miiller-Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am
Beispiel der CRC Card-Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture — Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jiirgen: “Enterprise Modelling in the Context of Manufacturing — Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-intensive Systems”

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilitit im Geschiftsprozess-management-
Kreislauf”

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradiiberwachung von Software”

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ,Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen fiir die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of
Model Curricula”

No 16 (May 2007)
Miiller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-
pacity Planning”

Previously published ICB — Research Reports

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen fiir IT-Professionals — Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden fiir Soft-
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstiitzung der Aufgaben des
IT-Managements — Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einfiihrender Lehrbiicher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: ”Uberlegungen zur Qualifizierung des wissen-
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag fiir ein Forschungspro-
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universititen — Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jiirgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part III — Results
Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II — Results Information Sys-
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part I — Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: , Ein Bezugsrahmen zur Beschreibung von Forschungsgegenstinden und -methoden in
Wirtschaftsinformatik und Information Systems”

Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Core Research Topics

E-learning, Knowledge Management, SkillManagement,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker

Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

PD Dr. C. Kliver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Miiller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. E. Rukzio
Mobile Mensch Computer Interaktion mit Software Services

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski

Institute of Production and Industrial Information Management

For more information visit us on the Web: hitp://www.icb.uni-due.de

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

	DocumentServlet-1.537.246.654.449
	ICB-Report-No49

