.: DuEPublico

Specialisation in business process modelling

Frank, Ulrich
In: ICB Research Reports - Forschungsberichte des ICB / 2012

Thistext is provided by DuEPublico, the central repository of the University Duisburg-Essen.

Thisversion of the e-publication may differ from a potential published print or online version.

DOI: https://doi.org/10.17185/duepublico/47062

URN: urn:nbn:de:hbz:464-20180917-153329-9

Link: https.//duepublico.uni-duisburg-essen.de/servlets'DocumentServl et?i d=47062

License:
Aslong as not stated otherwise within the content, all rights are reserved by the authors / publishers of the work. Usage
only with permission, except applicable rules of german copyright law.

Source: |CB-Research Report No. 51, May 2012

https://doi.org/10.17185/duepublico/47062
http://nbn-resolving.org/urn:nbn:de:hbz:464-20180917-153329-9
https://duepublico.uni-duisburg-essen.de:443/servlets/DocumentServlet?id=47062

& _ IcB
V Institut fur Informatik und
Wirtschaftsinformatik

Ulrich Frank

Specialisation in Business Process Modelling:
Motivation, Approaches and Limitations

UNIVERSITAT |CB-Research Repor’r No. 51

DUISBURG
ESSEN May 2012

Die Forschungsberichte des Instituts
fir Informatik und Wirtschaftsinfor-
matik dienen der Darstellung vorlau-
figer Ergebnisse, die i. d. R. noch fiir
spatere Verdffentlichungen iiberarbei-
tet werden. Die Autoren sind deshalb
fiir kritische Hinweise dankbar.

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica-
tions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Ubersetzung, des Nachdru-
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen — auch bei
nur auszugsweiser Verwertung.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Author’s Address:

Ulrich Frank

Institut fiir Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

D-45141 Essen

ulrich.frank@uni-due.de

ICB Research Reports
Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff

Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke
Prof. Dr. Volker Gruhn

PD Dr. Christina Klaver
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Miiller-Clostermann
Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

Contact:

Institut far Informatik und
Wirtschaftsinformatik (ICB)
Universitdt Duisburg-Essen
Universitatsstr. 9

45141 Essen

Tel.: 0201-183-4041
Fax: 0201-183-4011

Email: icb@uni-duisburg-essen.de

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

Abstract

To facilitate designing and maintaining collections of business process models and corre-
sponding implementation documents, it is of pivotal relevance to identify commonalities
that a set of process types share. They allow for reusing parts of process models and are a
prerequisite of efficient and consistent modifications. Discovering or constructing common-
alities requires abstraction. With respect to model integrity, there is need for precisely speci-
fied abstraction concepts that enable convenient and secure adaptations to particular re-
quirements. Against the background of various alternative approaches to foster abstraction
in process modelling, this report is mainly aimed at investigating chances and specific chal-
lenges that relate to the conception of generalisation/specialisation for process types. For this
purpose, a preliminary conception of process specialisation is proposed that is based on spe-
cialisation of static artefacts. A subsequent overview of existing approaches to specify a con-
cept of process specialisation shows that none of these is satisfactory. Moreover, it will be
shown that a conception of process specialisation that corresponds to specialisation of static
artefacts is not possible. Finally, an outline of a relaxed conception of specialisation and the

use of local meta process types are proposed as a possible loophole.

Table of Contents

FIGURES ...coiitiieciensnessssassessssssssssssessassssssssassessssassessssssssssssssssassasass III
1 INTRODUCTION ...cccuiiiierrurnenisnsnssessessssssesssssassesssssassssssssssassassssassosssssasssssssessasses 1
2 THE NEED FOR ABSTRACTION IN PROCESS MODELLING........ 3
2.1 MOTIVATING EXAMPLEccviotetiietiietitetistesestesessessesessesessesassesessesassesassessssessssassssessesensesessesensesssessssesesenes 3
2.2 POSSIBLE APPROACHES TO PROCESS ABSTRACTIONcceuirueriierirseresseressesesseseesessesessesessesessessssessssesesseses 4
3 PROCESS SPECIALISATION: PECULIARITIES AND REQUIREMENTS........cccocevuerrurserennensnenens 9
3.1 A BRIEF GENERAL CONSIDERATION OF SPECIALISATION........cecteettestenuteeesueereesueesseseessesnsessesssessesssesseens 9
3.2 PECULIARTIES OF PROCESS SPECIALISATIONcteveutsveerereseesestesensesessesessesessessssessssessssessesessesassesessesenses 11
4 EXISTING APPROACHES TO PROCESS SPECIALISATION 15
4.1 SPECIALISATION OF BEHAVIOUR IN OBJECT-ORIENTED SOFTWARE SYSTEMScccvertteienreeienneeeeneeenss 15
4.2 WORKFLOW INHERITANGEctstetstetssesterestesessesesesessesessesessesessessssessssassesessesensessssessssessssessssessssessssenes 18
4.3 AN ALTERNATIVE APPROACH TO PROCESS SPECIALISATIONeuvevereerereereneereseressesessesessesessesessesessenes 21
4.4 PROCESS SPECIALISATION IN KNOWLEDGE REPRESENTATIONc.coveieveiereneeresesessesesesessesessesessesessenes 24
5 ASSESSMENT AND CONSEQUENCES..........ccocerurrrurrercrrensaenes 27
5.1 FOCUS ON FUNCTIONAL ABSTRACTIONS AS AN ALTERNATIVE?cctertirteierteneentenreetenseeeesseeeeseeenes 27
5.2 INSTANTIATION INSTEAD OF SPECIALISATIONT?ccveirveeisrerereeeressesessesessesessessssessssessesessssessesassesesesenses 31
6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS.......cccceteurmrencnsnransesssssassessnsnssessonens 34
REFERENCES 35

ii

Figures

FIGURE 1: ILLUSTRATION OF COLLECTION OF BUSINESS PROCESS MODELSccctetertietenieeienieeiesreeeesseeseesneens 3
FIGURE 2: ILLUSTRATION OF INFORMAL CONCEPT OF PROCESS SIMILARITYc..cecteeutereeeiereerienseereesseensesseensesneens 4
FIGURE 3: DIFFERENT KINDS OF SIMILARITY ...cccuteecueeeuteeireeseeesseesssessseessseessessssssssessssessssssssssssessssssssesssssssessssesssessns 5

FIGURE 4: CONCEPTUAL REPRESENTATION OF EXAMPLE ASPECT, INSPIRED BY A CORRESPONDING CODE
EXAMPLE IN (KICZALES, HUGUNIN ET AL. 2003)eteutiritetenieeteeteeiesiteiestteeeseteseesaeeseeseessessaessessesseesesseens 6

FIGURE 5: IMPLEMENTATION OF ASPECTS AS AN EXTENSION TO JAVA, ADAPTED FROM (KICZALES, HUGUNIN

ET AL. 2003) 1eouteuietieiietieteeteetestestestestetetestesteseeseesessessessassessassansensensessesseseessasessessessensassensensansensensesseseeseesassessens 6
FIGURE 6: ASSIGNING CONCERNS TO BUSINESS PROCESS TYPEScccctteitieeieeireesieesieesreesseesssessseessessseesssesssessns 7
FIGURE 7: ILLUSTRATION OF PROCESS SPECIALISATIONcccoveeteiteeeteereesreereesseeseenseessenseessesseesesseessessesssessssssessenns 8
FIGURE 8: SPECIALISATION RELATIONSHIPS BETWEEN BUSINESS PROCESS TYPES.......ccoveiueeieireeerereereereeveeseenns 12
FIGURE 9: ILLUSTRATION OF PROCESS SPECIALISATION BY ADDING PARTSccooovviiiierieieeiecteereereere e veenns 13
FIGURE 10: ILLUSTRATION OF PROCESS SPECIALISATION BY ELIMINATING PARTS......ccocoeeveireeerecreereereeveereenns 14

FIGURE 11: EXAMPLE OF INVOCATION CONSISTENT SPECIALISATION, CONSTRUCTED FROM EXAMPLES IN
(SCHREFL AND STUMPTNER 2002)cvtevertentetentetetetetetenteteeestestesessessessessessessensenseneensenseneeseeseesessessessenae 16

FIGURE 12: EXAMPLE SPECIALISATION THAT IS NOT INVOCATION CONSISTENT — CONSTRUCTED FROM
EXAMPLES IN (SCHREFL AND STUMPTNER 2002)......ccucetertertetenieteteteenenreeessessessesseseesseseneeseeeeseeneesessenne 17

FIGURE 13: ILLUSTRATIONS OF SPECIALISATION CONCEPTS SUGGESTED BY VAN DER AALST AND BASTEN
(ADAPTED FROM AALST AND BASTEN 2003, P. 97) ..ccveiiieirirereieitneriesiestestestestetesteseeteteseesee et 20

FIGURE 14: STATE CHARTS OF PROCESSES IN VARIOUS TYPES OF RESTAURANTS — (WYNER AND LEE 1994)...... 22

FIGURE 15: GENERALIZED STATE CHART AND INCLUDED “SPECIALIZED” PROCESS — ADAPTED FROM (WYNER

AND LEE T994) ...ttt ettt ettt ettt et s a e et esa e et e s ae et e eb e e b e estenteestenteentenseeatenseensenaeenees 23
FIGURE 16: ILLUSTRATION OF NON-MONOTONIC INHERITANCE (BERNSTEIN ET AL. 2005)eeoverveeienieeeenenne 24
FIGURE 17: MONOTONIC VS. NON-MONOTONIC REASONING ...cuvvvriiiieieeeeeeeeeeeeieseesssssssssssssssssesreeesesseseseeeesessnnnnns 25

FIGURE 18: GENERALISATION/SPECIALISATION FOR FUNCTIONAL ABSTRACTIONS OF BUSINESS PROCESSES28
FIGURE 19: EXAMPLE OF PRAGMATIC SPECIALISATION OF FUNCTIONAL ABSTRACTIONcoovtervernreerveenneenneens 29

FIGURE 20: CONSTRUCTING DYNAMIC ABSTRACTIONS THROUGH REFERENCES TO FUNCTIONAL ABSTRACTIONS

... 30
FIGURE 21: USING ABSTRACT SUPER PROCESS TYPES AND CORRESPONDING ABSTRACT EVENT TYPES TO

REPRESENT COMMON COREuetiiiiiiuieieeieeietteeeeesiteeeeessessssteessessssseesssssssssesessssssssessssssssssessssssssseessssssssseessns 31
FIGURE 22: REUSE THROUGH INSTANTIATIONuvtiiiiiiteteeeeeeinteeeeeesisteeeeesssseseeesssssssesssssssseessssssssseessssssssssesssnnnns 33

iii

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

1 Introduction

Abstraction is of outstanding importance for dealing with complexity — in everyday life and
especially in conceptual modelling. It allows us to fade out those aspects of a subject that are
not relevant for a certain purpose. It also enables us to take advantage of commonalities
shared by a set of concepts: Common concepts are a prerequisite for reuse and integration.
At the same time, abstraction fosters system maintenance. On the one hand abstracting on
commonalities enables modifications that are applied only once — to common representations
— and update consistently a range of corresponding components. On the other hand, modifi-
cations of those system parts that are not included in the common representations — that are
abstracted from — can be modified without causing harmful side effects or in other words:
without challenging the validity of the common concepts. The use of abstraction in concep-
tual modelling requires precisely defined abstraction concepts, which includes mechanisms
that allow for convenient and secure adaptations. The most important abstraction concepts
in conceptual modelling and systems design comprise classes, encapsulation, polymorphism
and - last but not least — generalisation/specialisation. A class allows abstracting from partic-
ular instances. As a consequence, the features defined for a class, especially its methods, can
be reused by all its instances. On a conceptual level, changes that are applied to a class are
immediately effective in all corresponding instances. Of course, the effect of changing classes
in a system depends on the type of change and the particular programming language. En-
capsulation, also referred to as information hiding, is an abstraction over all possible imple-
mentation that satisfy a certain interface. Hence, it allows for abstracting from the implemen-
tation of a method. As a consequence, the implementation can be changed without affecting
the interface, thereby reducing the range of side effects substantially. Generalisation results
in a general concept that represents the common features of a set of more specific concepts.
Specialisation allows for adding further features to a general concept to define more specific
concepts. Hence, generalisation allows abstracting from the specific features of specialized
concepts. As a consequence, changes that are restricted to common features need to be ap-
plied only once, while they are effective in all specialized concepts. Also, adding further spe-
cialized concepts or modifying existing ones does not compromise the semantics of the gen-
eral concept. Since generalisation implies specialisation et vice versa, we will from now on
use the term “specialisation” only to represent both sides of the same coin. Polymorphism
allows for abstracting from the class of the object a message is sent to. Hence, it is an abstrac-
tion over all methods of a certain kind and all corresponding classes of objects a correspond-
ing message might be sent to. This allows for adding new classes to a system that offer a spe-
cific implementation of a method without the need to change the code where the method is
called. If, for instance, a graphical editor is to be extended to include triangles, a correspond-
ing class would be specialized from an existing class. Hence, polymorphism takes advantage

of both ideas, specialisation and information hiding.

Introduction

Abstraction concepts are widely used in conceptual modelling. Also, their benefits are, pro-
vided they are appropriately used, undisputed. However, so far, the use of abstraction con-
cepts is widely restricted to static or functional concepts, especially in the area of object-
oriented modelling and system design. Current languages for business process modelling
show a remarkable lack of abstraction. This is a serious shortcoming with respect to model-
ling productivity and model maintenance. This report is aimed at analysing the background
for this surprising insufficiency. First, we will show that there is urgent need for abstraction
in process modelling. Against this background, we will discuss possible approaches to gain a
higher level of abstraction. Since a concept of process specialisation that satisfies certain re-
quirements, would be especially useful, we will then review existing approaches to process
specialisation or process inheritance respectively. Based on the results of this review and
principal concerns regarding the feasibility of a powerful specialisation concept, we will fi-

nally present alternative approaches to increase the level of abstraction in process modelling.

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

2 The Need for Abstraction in Process Modelling

The lack of abstraction concepts in business process modelling languages such as EPC
(Scheer 1999) or BPMN (OMG 2011) could be contributed to the fact that users of these lan-
guages did not complain about this insufficiency. While the latter may be true, there is never-
theless a very good reason to demand for a higher level of abstraction in process modelling.
To back this claim, we will look at scenarios that describe the prototypical use of process

models in larger organisations.

2.1 Motivating Example

Larger organisations may comprise a few tens of business process types. Designing and
maintaining a corresponding number of business process models face substantial challenges.

The example in Figure 1 shows a collection of process models in an imaginary company.

_________________ Process Type

Procurement A D@D

D@D Compensation
Hiring Staff =)=

Procurement B

Travel Management
Akquisition

D@D Complaint

Incident Management Management

Figure 1: Illustration of Collection of Business Process Models

Scenario 1: A company is confronted with a new legal regulation that may have to be ac-
counted for in several business process types. This scenario recommends an abstraction that
represents those process features that are affected by the legal regulation. This would, at
best, allow for restricting the required modifications to the corresponding commonalities.
Otherwise, every process model would have to be checked and possibly modified — with

respective consequences on integrity and costs.

Scenario 2: A further more specific order management process needs to be implemented. An
abstraction that allows for identifying the commonalities of existing order management pro-
cesses and additional ones would be beneficial, since it would enable reusing existing mod-

els and would facilitate model maintenance later on.

The Need for Abstraction in Process Modelling

The following section gives an overview of possible approaches to address the challenges
illustrated by the above scenarios. Assessing these approaches will contribute to develop

requirements a sophisticated process abstraction concept should satisfy.

2.2 Possible Approaches to Process Abstraction

Representing relevant commonalities of a set of business process models can be accom-
plished on different levels of granularity, i.e. one could focus on common features of busi-
ness process types, or of common features of sub-processes or events. We start with focusing
on abstractions that concern entire business process models. For this purpose, we distinguish
four different approaches: an informal conception of similarity, an informal conception of

specialisation, aspects, and a formal conception of specialisation.

If two business process types share commonalities, they are similar. A weak form of repre-
senting similarities between two process models would be to introduce a special kind of as-

sociation. It would allow for expressing that two process models are similar (see Figure 2).

Procurement A D@D —

@ Compensation
Hiring Staff _D@D

Procurement B
Order Management

Travel Management

Akquisition

D@D _— Complaint

Management

Incident Management

is similar to

Figure 2: Illustration of informal Concept of Process Similarity

While this approach is easy to implement, it would be of limited help only. Since it does not
include a formal specification of similarity, it would remain unclear, what the commonalities
are, the idea of similarity is based on. However, it would be possible to add an informal de-
scription of the intended similarity. Since there may be various kinds of similarities between
two process models, one could refine the simple concept of process similarity by allowing for
expressing different kinds of — again informal — similarity. Figure 3 illustrates the use of an

informal conception of different kinds of similarity.

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

Procurement A ——D@D —

D@D Compensation
Hiring Staff D@D

Procurement B
Order Management

Travel Management

Akquisition
D@D Complaint
. Management === customer-oriented
Incident Management
exceptions
supply-chain

Figure 3: Different kinds of Similarity

Allowing for differentiating kinds of similarity increases the chance to identify business pro-
cess models that share common characteristics of a certain kind. While it is fairly easy to im-
plement, its contribution to fostering reuse and maintenance is still rather limited, since it
lacks a formal specification of the commonalities the different kinds of similarity are based
on. Nevertheless it may help with identifying process models that may share common parts

or that may be affected by a certain new requirement.

In Software Engineering, there are various approaches to reduce effort and risk of maintain-
ing large systems. With respect to the above scenarios, the concept of an “aspect” (Kiczales,
Lamping et al. 1997; Kiczales, Hugunin et al. 2003) is of particular relevance. It serves as an
abstraction in those cases where abstraction concepts provided by object-oriented program-
ming language are not suited to express certain commonalities and/or as an instrument to
reengineering code by adding additional abstractions to existing code in order to facilitate
maintenance. Parts of a software system that address the same or similar tasks are represent-
ed as “cross-cutting concerns”. Examples of cross-cutting concerns are printing, security,
persistence, user-interface etc. A cross-cutting concern is assigned to methods within the sys-
tem that serve to handle the respective tasks. An aspect serves as an abstraction over these
methods, which are usually part of different classes. If new requirements have an effect on
e.g. security issues, the corresponding aspect would allow for writing code that is applied to
the distributed methods in a predefined way. Figure 4 gives an example of how aspects can
be conceptualized. In this case, all methods of respective classes that serve to update a graph-
ical representation at the display are subsumed into a corresponding aspect “DisplayUpdat-

r7

ing”.

The Need for Abstraction in Process Modelling

<<Factory>> Figure <« created by FigureElement

makePoint(): Point

By (int, int
makelLine(): Line 11 0% |moveBy (int,int)
Point Line
getX(): int getP1(): Point
getY(): int getP2(): Point
setX(): int - " setP1(Point)
setY(): int DisplayUpdating setP2(Point)
moveBy (int, int) (Aspect) moveBy(int, int)

Figure 4: Conceptual Representation of Example Aspect, inspired by a corresponding code example
in (Kiczales, Hugunin et al. 2003)

As a consequence, an aspect allows for addressing all particular methods it comprises in one
statement, hence contributing to code reuse and especially to efficient and secure mainte-
nance. The example in Figure 5 illustrates the use of aspects on the code level, based on an
extension of Java. The language concept “pointcut” serves to define the abstraction by sub-
suming all respective methods. Then the pointcut can be used to write code that applies to all

methods it comprises.

pointcut moves ():

receptions (void FigureElement.moveBy (int, int)) | |
specification of aspect 2
reference to correspond-
ing methods

receptions (void Point.setX (int)) |
receptions (void Point.setY (int)) |

receptions (void Line.setP1 (Point)) |

receptions (void Line.setP2 (Point));

aspect DisplayUpdating {

supplementing all respectively
— marked methods with additional
code

pointcut moves ():
after (): moves () {

Display.needsRepaint ();

Figure 5: Implementation of Aspects as an Extension to Java, adapted from (Kiczales, Hugunin et al. 2003)

While the abstraction that aspects allow for can be of remarkable value, it is important to
note that there is no clear semantics of aspect. Instead, it is left to the software engineer to
define the semantics through the specification of concerns and the association (“weaving”)
with corresponding code. With respect to business process models, the idea of aspects can be
used to define concerns that are associated with business process types. Figure 6 illustrates

the application of concerns to business process modelling.

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

L S

f Procurement A D@D

D@D Compensation
Hiring Staff :%%}D

* Concerns
Procurement B

Order Management § % ’ { Legal A

Travel Management * Legal B

Akquisition
D[%]D * Payment

D@D Complaint .

Management Contracting

Incident Management

Figure 6: Assigning Concerns to Business Process Types

Defining concerns may help with identifying process models that may reuse common parts
or that may be affected by new requirements. However, as long as there is no precise specifi-
cation of concerns and how corresponding modifications should affect the respective process

models, the concept remains dissatisfactory.

Compared to the previous approaches specialisation is promising the advantage that it
seems to come with a clear meaning: As a default, specializing a concept means that all
propositions that hold true about the general concept hold true for the specialized concept,
too. Nevertheless, as we shall see, the specification of a formal concept of process specialisa-
tion is far from trivial. As a modest alternative, one could introduce an informal concept of
specialisation. This would allow for expressing that a process type is regarded as a speciali-
sation of a more general process type — hence indicating that change applied to the more
general type would somehow affect the specialized types. However, updating the special-
ized process models could not be automated. Therefore, it would be most desirable to have a
formal concept of process specialisation. Figure 7 illustrates that a change in a general pro-
cess type — indicated by the blue box — would be propagated to the respective subtypes in a

precisely defined way.

D@D

| | | |

D@—DD@—D

The Need for Abstraction in Process Modelling

Figure 7: Illustration of Process Specialisation

A formal concept of process specialisation would be very beneficial for both use scenarios. It
would allow for conveniently updating all business process models that are specialized from
a general process models that captures the essential the new legal regulations relate to. Also,

it would allow for specializing a new order management process from an existing one.

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

3 Process Specialisation: Peculiarities and Requirements

Generalisation/specialisation is an established concept for creating static abstractions, such as

object models!. Its potential benefits for process modelling are obvious, too.

3.1 A Brief General Consideration of Specialisation

To prepare for analysing the peculiarities related to defining a concept of process specialisa-
tion, we shall first look at specialisation in general. While it is a pivotal concept in human
communication, its semantics varies to a remarkable degree, which is illustrated by the fol-

lowing examples where specialisation is indicated by the predicate “is a”.

“Fear is a sensation.”

“A racing bike is a bike.”

“A research report is a document.”

“A student is a person.”

“Electronic order processing is an order processing.”
The examples show that the meaning of specialisation depends on the meaning of the corre-
sponding concepts. A concept guides structuring and interpreting the things that we per-
ceive. Specializing a concept can be regarded as restricting the interpretation, i.e. it does not
apply to as many objects as the superordinate concept. Hence, if the interpretations — and the
sets of objects they apply to — are not precisely defined, the semantics of specialisation re-
mains vague, too. That is especially the case for intentional concepts, i.e. concepts which are
defined by referring to emotional states or frames of mind. The underlying common under-
standing can be sufficient for agreeing that a specialisation is appropriate. Most people
would probably agree that fear is a special kind of sensation. However, it is certainly more
difficult to tell the exact difference between the two concepts, i.e. to specify the specialisation.
This is easier with concepts that allow for an extensional definition. In this case the semantics
of a concept is defined by the set (extension) of its features. The concept “person” could be
defined by features such as last name, first name, gender, date of birth etc. The specialized
concept “Student” would include further features. As a consequence, it would be much easi-
er to define the semantics of specialisation. But even with concepts that can be defined exten-
sionally, a sound conception of specialisation can be challenging. Probably nobody would
object that a racing bike is a special kind of bike. At first sight, both have common features:
two wheels, a saddle, brakes etc. However, they have clearly different types of wheels, sad-

dles etc. Apparently, it is hard to conceptualize the specialisation of an ordinary brake to a

! That does not mean, however, that using generalisation/specialisation in object-oriented modelling is
without any problems. The semantics of generalization/specialisation in object-oriented programming
languages is different from that of natural language or predicate logics — which is caused by different
concepts of “class”. This semantic mismatch is often not accounted for, which can result in incon-

sistent models (for a comprehensive discussion of this problem, see Frank 2003).

Process Specialisation: Peculiarities and Requirements

racing bike brake. As a consequence, it is hard to define a precise meaning for specialisation

in such a case.

In order to further analyse the question how specialisation could be specified for process
types, we will first define a general conception of specialisation that is motivated by the ben-
efits intended for reuse and maintenance. With respect to extensional concepts, a conception
of generalisation/specialisation can be defined by a few essential characteristics and addi-

tional constraints.
Essential Characteristics:

El: A set of concepts that share common features can be generalized into a superordi-
nate concept. This happens through abstraction: By abstracting to the common fea-
tures which constitute the superordinate concept — and by abstracting from those
features that are specific to each subordinate concept.

E2: A concept can be specialized from a superordinate concept by adding further fea-
tures.

Constraints:

C1: Subordination: Every assertion that holds for a general concept is true for its subor-
dinate concepts, too.? This request is an implication of subordination in logics (e.g.
in predicate logics) — and a prerequisite for efficient maintainability: Every modifi-
cation of a general concept is immediately effective in its subordinated concepts.

C2: Substitutability: Substitutability is an implication of subordination. However, it in-
cludes a further level of abstraction and it is directly related to software systems.
Whenever an instance of a super concept (e.g. a superclass) is required, it can be
replaced by an instance of one of its sub concepts (e.g. subclasses) without causing
any harm. For this purpose, the instance of a sub concept has to behave in a way
that makes it indistinguishable from the behaviour expected from instances of the
respective super concept. Substitutability is a common (though not undisputed)
request for the construction of type systems of object-oriented programming lan-
guages (see e.g. Wegner and Zdonik 1988 or Liskov and Wing 1994).

C3: Monotonic extension: For E2 not to hurt C1 or C2, adding new features to sub con-
cepts must be monotonig, i.e. it must not affect the semantics of the corresponding
super concept.

In the realm of software development, the term “inheritance” is often used instead of special-
isation. In its less restrictive interpretation, it simply means to copy features from a subordi-
nate concept, which then may be arbitrarily modified. Hence, the emphasis is on reuse.
However, the redefinition of inherited features has severe downsides with respect to integri-
ty. On the one hand, it compromises maintenance: It is not possible anymore to modify a set
of subordinate concepts simply be changing the corresponding feature within the superordi-

nate concept. On the other hand, it is a threat to substitutability. Therefore, inheritance is

2 Note that this does not include propositions on a meta level, e.g. “The concept ‘"Human Being’ is the

1

superordinate concept of ‘Student’”.

10

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

mostly supplemented by rules that restrict the permissible modifications. In object-oriented
programming languages, it is usually possible to override the implementation of a method.
While this may cause a different behaviour and thereby violate constraint C2, it does not
have an effect on the formal definition of the interface. Some programming languages as well
as the UML 2.0 (OMG 2007, p. 40) allow for specific changes to the interface of a subordinate
class, too. A covariant redefinition means that the classes of the parameters that are passed
with a method call are replaced by their subclasses. Take, for instance, the two classes “La-
ser_Printer” and “Colour_Laser_Printer”, with the latter specified as a subclass of the first.
“Laser_Printer” includes a method “getLevel (c: Cartridge)”. “Colour Laser Printer” rede-
fines the interfaces covariantly into “getLevel (c: Colour_Cartridge)”. While covariant re-
definition is suggested by some as an approach that corresponds to a common pattern in
natural language — and hence contributes to more “natural” models (see, e.g. Ducournau
2002), it comes with a severe problem: It violates the characteristic feature b) It does not al-
low for replacing an instance of a class by an instance of a corresponding subclass without
avoiding problems. From a logical perspective, it produces a contradiction: “Laser_Printer
requires Cartridge” implies “Colour_Laser_Printer requires Cartridge”. However, this prop-
osition is redefined to “Colour_Laser_Printer requires Colour_Cartridge”. Since there are
cartridges that are not colour cartridges, the redefinition contradicts the logical implication.
This is the same effect that is caused by so called non-monotonic extensions of a knowledge
base: It may seem natural, but it violates traditional logics. With respect to programming
covariant redefinitions — if they are accepted by the compiler — can cause run-time errors
with write accesses: If, e.g., a parameter of the class “Cartridge” is passed to an object of the
class “Colour_Laser_Printer” that acts as a substitute for an object of superclass “La-
ser_Printer”, the interface of the subclass would be hurt (for a comprehensive discussion see
Meyer 1997). A contravariant redefinition — which is usually not supported, because it seems

contra-intuitive — would replace the parameter classes by corresponding superclasses.

Inheritance in conjunction with redefining inherited features adds flexibility to reuse. Never-
theless, we will at first restrict our analysis to specialisation that corresponds to the above

conceptualisation in order to avoid the threats to integrity created by redefinitions.

3.2 Peculiarties of Process Specialisation

Figure 8 shows a further example of a specialisation hierarchy of business process types. It is
a high level model that defines specialisation relationships between business process types
without representing the respective control flows. At first sight, it may seem irritating that
“credit application business firm” is defined as subordinate to “credit application certified
firm”, since a “certified firm” is a subclass of “business firm”. However, while a more spe-
cialized subject may correspond to a more specialized process type, it does not have to. The

model shown in Figure 8 may have resulted from requirements analysis, where domain ex-

11

Process Specialisation: Peculiarities and Requirements

perts declared the specialized process types to be “special cases” of the respective super

types.

o=

credit
application
credit application credit application
certified firm private customer

===

credit application —» specialised from
business firm

Figure 8: Specialisation relationships between business process types

To develop an idea of process specialisation that promotes reuse and efficient maintenance,
we need to apply the conception of specialisation defined above. This requires defining a
process type by its features. According to specialisation for static abstractions, one could try
a conception of business process specialisation that is based on adding further features. With
respect to a dynamic abstraction, the features of a business process type can be regarded —
among other concepts — as the event and process types its control flow is composed of. Fig-
ure 9 shows a corresponding conception applied to the decomposed business process models

in Figure 8 — except for “credit application private customer”.

12

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

credit STOP
application

no chance
for contract

TART-

SswP7

calculate - repare contract
request terms&conditions term&conditions prep

received satisfactory

A

contract prepared

credit

application
certified firm

no chance
for contract

TART-

SsToP 7

determine options) calculate - repare contract
request P options terms&conditions term&conditions prepi

received determined satisfactory

contract prepared

A

credit

application
business firm

risk not
acceptable

no chance
for contract
TART: STOP

i 5 i e i i . calculate .
request assess risk risk within lImit determine options options e termeconditions prepare contract

received determined satisfactory

contract prepared

Figure 9: Illustration of Process Specialisation by Adding Parts

The generic business process model is specialized into “credit application certified firm” by
adding further elements to the control flow. This applies to the specialisation of “credit ap-
plication certified firm”, too. At first sight, the example in Figure 9 may suggest that the
shown extension of a process type can be used as a foundation for a corresponding speciali-
sation concept. However, this would be a deceptive impression. On the one hand, such a
conception might be regarded as inappropriate with respect to existing ideas of process spe-
cialisation. Sometimes, a further process type where process steps have been eliminated may
be regarded as the “special case” (see example in Figure 10). While this may be regarded as a
result of the ambiguous use of the term “specialisation” in natural language that has to be
overcome with the specification of a modelling language, it cannot entirely be ignored since
usability demands for modelling concepts that corresponds to the technical terminology pro-

spective users are familiar with (Frank 2011).

13

Process Specialisation: Peculiarities and Requirements

credit STOP
application
business firm

risk not
acceptable

START:

no chance
for contract

Xs'rm7

H i X R i i . calculate
i request assess risk risk within limit determine options options terms&conditions term&conditions prepare contract contract prepared
received determined satisfactory
A
credit —sToP
application
certified firm
no chance
for contract
TART- SSTDI’7
determine options . calculate - epare contract
i request rmine opti options terms&conditions term&condltlons prepar " contract prepared
i received determined satisfactory
A
credit
application
no chance
for contract
==STAKT. f sToP 7
calculate tract
request terms&conditions term&conditions prepare contrac contract prepared
received satisfactory

Figure 10: Illustration of Process Specialisation by Eliminating Parts

On the other hand — and more important — adding features, i.e. subprocesses and events, in a

way that the constraints defined for specialisation are not violated, is apparently not as easy

as with static abstractions. At first sight, it is obvious that the extensions shown in Figure 9

do not satisfy the substitutability constraint: Substituting an instance of a subprocess for an

instance of the corresponding super process will certainly not remain unnoticed. Our brief

discussion shows that developing a conception generalizing/specializing business process

types faces serious obstacles.

14

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

4 Existing Approaches to Process Specialisation

Compared to the plethora of literature on business process modelling, relatively little work

has been published on generalisation/specialisation.

4.1 Specialisation of Behaviour in Object-Oriented Software Systems

The majority of related work is focussing on specialisation or inheritance respectively in ob-
ject-oriented programming languages — with special emphasis on object behaviour. Hence,
these publications are aimed at dynamic abstractions of classes or objects respectively. Their
main focus is on the redefinition of inherited operations: What are acceptable rules for the
possible scope of redefining — or specializing — the behaviour of these operations. For this
reason, these publications are related to the specialisation of business process types. Most
authors agree that the demand for substitutability needs to be fulfilled: “The objects of the
subtype ought to behave the same as those of the supertype as far as anyone or any program
using supertype objects can tell.” (Liskov and Wing 1994), p. 1811; for a similar request see
Wegner and Zdonik 1988) At the same time, it is widely agreed that prohibiting any redefini-
tion of inherited operations is too restrictive. This constitutes the challenge to define rules for
modifying inherited operations in a way that the resulting behaviour of a corresponding
object does not deviate from the behaviour that is expected from an object of the superclass.
While some of these works do without graphical representations of object behaviour, Schrefl
and Stumptner use a kind of state charts (“behaviour diagram”) to visualize their approach.
They draw upon Petri Nets: “States correspond to places of Petri nets, activities to transi-
tions.” (Schrefl and Stumptner 2002, p. 95) Behaviour diagrams are used to represent object
life cycles. The notion of specialisation they suggest is based on the conception of a subnet. A
behaviour diagram B’ is a subnet of another behaviour diagram B, if B” is “embedded” in B.
For a subnet to represent an acceptable specialisation of object behaviour, it has to be a con-
sistent extension. Schrefl and Stumptner differentiate “observation consistency” and “invoca-
tion consistency”3. A specialisation is an observation consistent extension of object behav-
iour, if the resulting behaviour is the same as the behaviour defined for the superclass. Imag-
ine, one would view a process instance through a special lens that faded out states and activ-
ities which are not present in the lifecycle of objects of superclasses. Then it would not be
possible to distinguish the behaviour of an object of the subclass from the one of an object of
the superclass. Invocation consistency is not restricted to observable behaviour. It include the
invocation of operations: “Thus, any operation invocable on instances of a supertype must
under the same precondition also be invocable on instances of any subtype and executing the
operation on instances of a subtype meets the postcondition for the operation specified at the

supertype.” (Schrefl and Stumptner 2002, p. 102) The authors provide a formal definition for

3 Note that we do not follow the distinction between weak and strong “invocation consistency” sug-

gested by the authors, because we do not need it for our purpose.

15

Existing Approaches to Process Specialisation

invocation consistency, which can be nicely illustrated through examples. Figure 11 shows

an example of a specialisation that is invocation consistent.

use

"RESERVT. . RESERVT.\ T I /RESERVT.
request issue
I]_r. r r
requested issued mgancelf void
sendSorryLetter RESERVT.
I r
sorrySent
urge
(RES PLUSN pjy pay {FES PLU
i ad
thank
. Customer
use -
request RES_PLUS issue U
N Tequested / - oancel Vo
sendSorryLetter ¢-BES_PLU RES PLU efund AES PLU
SOrmySent \ toReund / _refunded 7
custAccepts

offer q
Alternative
—}D_’ custAccepted

_altToOfier / [tOffer WHE PLU

N custRefected /*

@ State

[] Activity

Figure 11: Example of invocation consistent specialisation, constructed from examples in (Schrefl
and Stumptner 2002)

The net that represents the object lifecycle of the superclass is contained in the net represent-
ing the object lifecycle of a corresponding subclass. A state can trigger one or a set of mutual-
ly exclusive activities (exclusive choice, XOR). An activity can start only after all states that
directly precede it, have occurred. An activity (also referred to as “event”) can result in one

or more states (AND). An object of the specialized class depicted in Figure 11 has the same

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

behaviour as objects of the superclass. Apparently, the additional activities and states do not
affect the inherited lifecycle — which indicates observation consistency. In addition to that,
every operation that can be invoked on objects of the superclass, e.g. “issue”, “use” etc., can
be invoked on instances of the subclass, too — provided the same conditions are satisfied. The

Figure 12 shows a case where specialisation does not satisfy invocation consistency:

use

RESERVT.) RESERVT. /{]\. RESERVT.
request issue
r]y

issued \ci”[lc%‘ void

RESERVT.

requested

sendSorryLetter
r r

somrySent

LRES W _PAY . LRES W_PAY LRES W _PAY

bill pay

P P P P
toBeBilled billed aid
P
LRES W _PAY LRES W_PAY LRES W _PAY
request use

I |r.D.f' f pf
requested issued otRefundable

r.pf r

e, rf
LRES W PAY !
sendSorryLetter [RES W PAY
cancel
r
sorrySent
void
f
LRES W PAY LRES W _PAY
toRefund refunded

Figure 12: Example specialisation that is not invocation consistent — constructed from examples in
(Schrefl and Stumptner 2002)

For objects of the superclass, the activity “use” will be performed immediately after “reserva-
tion issued” has occurred. This is different for objects of the subclass: There this change of

state can be performed only after the reservation has been paid for.

Could such a conception of specializing object behaviour serve as a model for a specialisation
concept of business process types? Unfortunately, the answer is no — even though the au-
thors indicate that it could be used for workflow types. This is for a simple reason: The con-
ception of substitutability applied by Schrefl and Stumptner (and others in the area of object-
oriented software engineering) is not appropriate for business process models. Their per-
spective on object behaviour is characterized by the idea of a contract that defines possible
states and state changes. An object satisfies such a contract, if it allows all paths of possible

state changes to be executed. Hence, a specialisation of object behaviour is regarded as con-

17

Existing Approaches to Process Specialisation

sistent, if it fulfils the contract defined for the superclass. It is essential for assessing this con-
ception that a subclass is assumed to fulfil the contract, too, if it allows for additional paths of
state changes that do not interfere with those of the superclass. Hence, it is assumed that ad-
ditional behaviour — to whatever extent it may occur — does not jeopardize substitutability.
While this conception may be satisfactory with respect to building reliable software systems
— which still has to be shown, it is not acceptable for modelling business processes. A busi-
ness process is characterized by the consumption of scarce resources. If a business process
does not only include those processes and consumes those resources that are required for
doing the job, but includes further processes, consumes further resources, it would certainly
not pass as an acceptable substitute. Instead, it would be regarded as a strange imposition.
Furthermore, but not as important, behaviour is restricted to the lifecycle of objects of one
class. A business process model is not conceptualized as the behaviour of objects of one par-

ticular class. This is the case for most workflow models, too.

What are the lessons to be learned from the work on specialisation of object behaviour for the
definition of specialisation for business process models? The idea that business process
should fulfil a contract deserves attention. Contracts are an important instrument to reduce
complexity — certainly not only for constructing software systems. In the area of business
process models, contracts seem to be relevant for two specific reasons. Firstly, the concept of
a contract is well known in business. Secondly, it has gained additional weight through the
popularity of service-orientation. A further aspect of contracts that is accounted for in soft-
ware engineering is related to specializing the parameters required for or delivered by an
operation. This may be a useful approach with respect to resources or organizational units
required to execute a business process. If, e.g., a process requires a programmer, a computer
scientist could be used as a substitute. This could be expressed explicitly by defining com-
puter scientist as a specialisation of programmer. Beyond providing inspiration, the work on
specializing object behaviour suggests that the idea of specializing process types by extend-

ing them is not applicable to business process types.

4.2 Workflow Inheritance

One further approach is aimed at specialisation in the realm of workflow types, which are
similar to business process types. In a series of publications, van der Aalst and various co-
authors analyse the subject of workflow inheritance and propose a few conceptions of spe-
cialisation (e.g. Aalst and Basten 1999a, Aalst and Basten 1999b, Aalst and Basten 2002a,
Aalst and Basten 2003, Aalst and Basten 2002b). Van der Aalst et al. motivate their approach
with pragmatic reasons. They discuss various kinds of change (e.g. “dynamic change”, “cus-
tomzing business processes”, see, e.g. Aalst and Basten 1999b) that suggest the use of appro-
priate specialisation concepts. They model workflow types with Petri nets. In general, work-
flow inheritance is characterized by extending an inherited net through further transitions
(tasks) and places (conditions). However, not any extension qualifies for specialisation. Van

der Aalst and Basten claim that an instance x of a process type that is of a specialized from

18

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

the process type y “... can do what y can do with respect to the tasks present in y” (Aalst and
Basten 2003, p. 96). Against this background, they propose four concepts of inheritance with
varying degrees of semantic restriction (Aalst and Basten 2003, p. 96 ff.). The term “inher-
itance” is misleading because they actually mean rules for different kinds of specialisation.
For this purpose, they distinguish “blocking” and “hiding” of tasks. A task that was added
on the level of a specialized process type can be hidden, i.e. it can be abstracted from that
task in a way as if it would not exist. Blocking a task on the other hand means that its execu-
tion is blocked. “Protocol inheritance” implies that an instance of a specialized process type x
shows the same behaviour as an instance of its superordinate process type y, if additional
tasks are blocked. In other words: in this case, they cannot be distinguished. If x seems to be
identical with y, if certain tasks in x are hidden, they speak of “projection inheritance”. “Pro-
tocol/projection inheritance” defines the most restrictive form of specialisation. It requires
that x cannot be distinguished from y both if the additional tasks were hidden and if they
were blocked. “Life-cycle inheritance” on the other side is least restrictive. It is the case, if a
specialized process type conforms either to protocol or to projection inheritance (Aalst and
Basten 1997, p. 70). For each of these four types of specialisation, they define transformation
rules that preserve the characteristics required for an instance of a subtype. Figure 13 illus-
trates the concepts with a few examples. All of the examples show a specialized workflow
type that is extended by the task “check”. A transition (task) that is filled with a red rectangle
displaying an “X” indicates that it is blocked in order to satisfy a specialisation constraint. A
transparent grey rectangle indicates that the part of the workflow it covers is assumed not to
be executed. Note that the letters used to identify the workflow types are those defined by
the authors. In Figure 13 they are presented in a different order. The instances of workflow
type C execute as if they were instances of A, if the transition (task) “check” is blocked. If it
was hidden only, it would be possible that the transition “handle” does not fire (place p1 can
result in firing “check” OR “handle”). This would violate the specialisation constraint. If the
shaded part of workflow type D is not executed, a corresponding instance would produce
the same behaviour as an instance of A. On the other hand, blocking “check” in this case
would result in a deadlock because the synchronisation could not be performed. In workflow
type B, the transition “check” can either be hidden or blocked. In both cases a corresponding

instance would execute as if it was an instance of A.

19

Existing Approaches to Process Specialisation

—bo—b

®_,

—-O—-

- .®

1 2
register P handle P archive ©
.protocol inheritance™
check
®— —®
i 1 2 .
! register P handle P archive ©
Jprojection inheritance®
p3 p
check
i 1 2
! register P handle P archive ©
»protocol/projection inheritance"
check
i . 1 2 . 0
register P handle P archive

Jprojection inheritance®

N Ay o

i 1 2
register P b=

- .®

archive

Figure 13: Illustrations of specialisation concepts suggested by van der Aalst and Basten (adapted
from Aalst and Basten 2003, p. 97)

Do the concepts of specialisation proposed by van der Aalst et al. provide a suitable founda-
tion for specializing business process types? While the various kinds of specialisation are
defined with respect to suitability, they do not satisfy this demand with respect to business
processes: Adding a further task (or in the terminology we use for MEMO business process
models: a further process) will result in a process type that requires additional effort and/or
the use of further resources compared to a generic process type. As we already asserted
above, this would not be acceptable for business processes. When the authors discuss the
benefits of their contribution, they do not focus on substitutability. Instead, they show how
their approach fosters the solution of certain abstraction problems. For instance: Dynamic
change of a workflow type is supported by the inheritance rules, since they make sure that

the extended workflow still satisfies the contracts to be fulfilled by a superordinate workflow

20

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

type. However, if somebody applies a modification to realize a so called “ad hoc” workflow,
it will often not be required to preserve the execution of the original workflow type. A fur-
ther benefit they mention is the support of “management information”. They argue that
managers are often not interested in the details of a workflow. The level of abstraction, they
are interested in, could be captured by a generic workflow type that is reduced to the essen-
tial tasks and conditions. The transformation rules defined by van der Aalst and Basten
would allow for showing an instance of a subordinate workflow type as if it was an instance
of the superordinate type. However, this is rather an example for defining a projection that
satisfies certain information needs than a convincing example for generalisa-
tion/specialisation. It seems that the authors’ primary focus is on defining a formal concep-
tion that allows for building tools which can, e.g. check whether a workflow type is a formal-
ly valid specialisation of another type. While there is no doubt that formalisation can be of
great value, it does not help much formalising a conception that is not satisfactory. The au-
thors themselves realize that the solution they suggest is of limited use only: “Clearly, this
does not provide a complete solution for the four problems presented in this paper.” (Aalst
and Basten 2003, p. 405) They do, however, indicate how their conception of specialisation

could also be interpreted: as the construction of a new variant of a workflow type.

4.3 An alternative Approach to Process Specialisation

Wyner and Lees suggest an approach to defining a specialisation concept for process models
that is worthwhile mentioning (Wyner and Lee 1999). While the authors compare their work
to research on specializing behaviour in object-oriented software systems, they relate it clear-
ly to business processes — although they do not use this term explicitly. They speak of “pro-
cess” instead. They emphasize a formal approach. Later, they published a formal specifica-
tion of a conception of specialisation they suggest (Wyner and Lee 2002). This conception is
remarkable because it seems to reverse common concepts of specialisation: Instead of adding
further features, they suggest to delete parts of a process type in order to specialize it. Never-
theless they emphasize substitutability: “a process p1 is a specialisation of a process po if eve-
ry instance of p1 is also an instance of po, but not necessarily vice versa.” (Wyner and Lee
1999, p. 11) They suggest an abstraction that regards a process type as a “set of possible be-
haviors”, which they refer to as the “extension” of a process type. Specializing a process type
happens through reducing its extension. They demonstrate the proposed conception by ap-
plying it to state charts and to data flow diagrams. We focus on state charts here, because
functional abstractions — as we have seen — do not provide a reasonable foundation for defin-
ing specialisation semantics for business process types. Wyner and Lee model processes in
various types of restaurants (“fast food”, “full service”, “buffet” etc.). The corresponding
state charts are depicted in Figure 14. Subsequently, they generalize these special process
types to a generic process type. The generic process type includes all special state charts as
possible paths of execution (see Figure 15). Specialisation can be specified as a function that
results in a projection of the state chart which characterized the subordinate process type.

This projection needs to describe (at least) one possible path of execution within the set of

21

Existing Approaches to Process Specialisation

paths defined for the superordinate process type. Hence, an instance of a specialized process
would represent a potential path of execution of an instance of the superordinate process.
Hence, one could speak of “observation consistency”, even though the conception of special-
isation is clearly different from that proposed by Schrefl and Stumptner. However, the spe-
cialized process types are not invocation consistent: It is, for example, not possible to set an
instance of the specialized process “full service restaurant” to the initial state “COOK” — alt-
hough this should be possible according to the state chart defined for the superordinate pro-
cess type. Also, it would not be possible to change the state “COOK” to “SERVE” — which is
an option for instance of the generic process type. Hence, substitutability, although demand-
ed for by the authors, is clearly restricted. At the same time it is obvious that the generic pro-
cess type is abstract in the sense that it must not have instances. Even more important is the
fact that the concept of generalisation they apply is neither compliant with generalisation in
natural language nor in formal systems: A generic concept represents the common features
of a set of more special concepts — in other words: the intersection of the corresponding sets

of features. Wyner and Lee use the union of these sets instead.

full service restaurant

fast food restaurant

all you can eat restaurant

church supper

»Q initial state @ final state

Figure 14: State charts of processes in various types of restaurants - (Wyner and Lee 1994)

22

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

Generalized restaurant transaction

Figure 15: Generalized state chart and included “specialized” process — adapted from (Wyner and
Lee 1994)

The authors do not realize that their conception of specialisation does not satisfy the demand
for suitability. However, it seems that they do not feel too comfortable with the fact that the
conception they propose represents a clear contrast to other conceptions of specialisation. In
a somewhat cumbersome discussion they ask whether there are two kinds of specialisation —
comparing specialisation by adding features (attributes) and by deleting features (states and
activities). While the discussion does not result in a convincing answer to the question, it
seems that two aspects contributed to the confusion they caused. Firstly, it appears that
Wyner and Lee confuse two perspectives on classes and specialisation respectively. An in-
tentional view stresses the definition of a class by its features. Specialisation in this view
suggests adding further features to a class in order to specialize it. Applying this conception
of specialisation to dynamic abstractions would result in the extension of behaviour as it is
suggested by many. An extensional view regards classes as sets. In this perspective, a sub-
class is a restriction in the sense that it demands for features that apply only to a subset of the
set that represents the superclass. Secondly, and more important for our analysis, they em-
phasize that specialisation does not have to imply adding further features, but may also be
realized by deleting inherited features. They do not provide a convincing justification for this
argument. Instead they give a misleading example. Nevertheless, they touch an important
aspect. It seems reasonable to assume that a concept that we would regard as a specialisation
of another process type may restrict the inherited features somehow. With respect to static
abstractions, this can be illustrated with a classical example: square and rectangle. While it is
reasonable to regard a square as a special kind of rectangle, it seems appropriate to delete
one attribute of rectangle — that stores the length of one side — to make it a square. However,
that would compromise substitutability. A possible solution to this problem is to add a con-
straint. In order not to violate the demand for substitutability, it should not change the essen-
tial features of the concept, but only restrict their use somehow. The use of constraints for
defining a specialized type is conceivable for business process types, too. Take, for instance,
two business process types — sale and sale for members — that are identical except for one

thing: For regular customers, the process “financial transaction” allows the use of cash, vari-

23

Existing Approaches to Process Specialisation

ous credit cards or the specific corporate credit card. Those customers that qualify as mem-
bers have to use the corporate credit card. Unfortunately, this kind of extension would not
satisfy the demand for suitability either. If, in the above example, a regular customer was
forced to use the corporate credit card, the business process would probably not be accepted
anymore. It seems that Wyner and Lee confused specialisation with instantiation. The “gen-
eral” process in Figure 14 is rather a (meta) model of all possible process models. To summa-
rize: While it is based on a coherent formal foundation, the proposal made by Wyner and Lee

is not a satisfactory conception for the specialisation of business process types.

4.4 Process Specialisation in Knowledge Representation

A further approach to process specialisation was inspired by work on the “process hand-
book” (Malone et al. 1999). It originates in the knowledge representation or semantic web
community addresses this challenge (Bernstein et al. 2005, Ferndriger et al. 2008). Compared
to the previous approaches it is less ambitious and more ambitious at the same time. On the
one hand, it does not account for the control flow. Hence, it is restricted to functional abstrac-
tions. On the other hand, it is aimed at a more powerful conception of specialisation that al-
lows for both adding and deleting subprocesses. Deleting a process is clearly a non-
monotonic extension, since it affects the inherited concepts. Therefore, the approach is based
on a conception of non-monotonic inheritance specified in formal ontology languages. In
(Bernstein et al. 2005), the Semantic Web Services Language (SWSL) is used, in (Ferndriger et
al. 2008), the approach is specified through an extension of OWL-S (Ontology Web Language
— Services). The proposed conception allows for changing and deleting inherited services
without producing contradictions — which would have to be expected in monotonic systems.
The main focus of this approach is to take advantage of pragmatic specialisation relation-
ships — that do not guarantee substitutability — and still allow for consistent reasonsing. Fig-
ure 16 illustrates the flexibility the approach allows for. The “specialized” business process
type “Sell in retail store” has only one process in common with its superordinate business

process type. The remaining processes are either replaced or deleted.

Sell Product

| 1 | |

[
Identify Inform

potential potential Obtain order [:BDL;‘LBC(‘ Rec:):;/ft
customers || customers p paymen
Sell by mail order Sell in retail store
[| 1 I] - [I - 1 I -
Obtain Mail ads to Receive Deliver Receive cuslc:::wa:r; i X or?:rl: Deliver paye;:r:lteat
mailing lists | | mailing list | |order by mail product payment oS register product register

Figure 16: Illustration of non-monotonic inheritance (Bernstein et al. 2005)

Non-monotonic reasoning is intended to offer more tolerant and flexible reasoning capabili-
ties. This claim is usually justified by referring to the power of human reasoning, which can

be successful regardless of logical inconsistencies caused e.g. by exceptions. The example in

24

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

Figure 17 illustrates the effect of non-monotonic reasoning for deductive retrieval procedures
by contrasting it to traditional logics. It is based on a declarative representation of the model

shown in Figure 16.

Representation of Business Process Types
Generalisation/Specialisation

“Sell in retail store” is_a “Sell Product”
“Sell by mail order” is_a “Sell Product”

Facts/Properties

“Sell Product” includes “Deliver product”
“Sell Product” includes “obtain order”
“Sell Product” includes “Inform potential customer”

NON (,,Sell in retail store" includes , Inform potential customer”)

Retrieval request
Show all process types that include "Deliver product"

Show all process types that include "Inform potential customer”

Results
Non-monotonic representation Traditional logics
Reasoning still possible. Contradiction corrupts knowledge base. No reasoning
“Sell in retail store” includes “Deliver product” evaluates possible anymore.
to true. Every proposition can be deducted together with its
“Sell in retail store” includes “Inform potential customer” negation.

evaluates to false.

Figure 17: Monotonic vs. non-monotonic reasoning

What is the potential use of non-monotonic specialisation for business process modelling?
First of all: While the authors claim to provide a more versatile and natural conception of
specialisation, it also allows for creating strange and misleading abstractions. From a formal
point of view, any specialisation relationship could be reversed. For the reconstruction of an
existing technical language, where generalized terms are already defined as such, this may
be acceptable. However, with respect to the motivation of our investigation, this approach is
not satisfactory: It reduces specialisation to an arbitrary concept, since it allows every process
type to be defined as a specialisation of any other process — et vice versa. In addition to that
there are two reasons why this approach is not suited for our purpose. On the one hand, the
intended applications are different. The proposal of a non-monotonic conception of speciali-
sation targets business processes in electronic commerce that may be represented in large,
international repositories with hundreds or thousands of entries. For such a scenario, re-
trieval and reasoning-based retrieval can become a major requirement. In our case, retrieving
business process models is certainly not irrelevant, but it is not a major issue. On the other
hand, languages for enterprise modelling are usually specified with meta models. Recon-
structing the language specification using a formal language that supports non-monotonic
reasoning would imply to give up all advantages that come with a meta modelling approach.
Nevertheless, it would not require a tremendous effort to transform a business process mod-
el into a declarative representation using, e.g., an extension of OWL-S. Therefore, it could be

an option for supporting retrieval in large repositories of business process models. Despite

25

Existing Approaches to Process Specialisation
its ambitious formal foundation, the proposed approach could serve as a model for a prag-

matic concept of inheritance, since it allows for either adding, modifying or deleting inherit-

ed processes.

26

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

5 Assessment and Consequences

Our analysis of generalisation/specialisation of business process types suggests the following

hypothesis:

No matter whether a business process type is “specialized” by adding further events,

processes, or constraints, its instances cannot be substituted for the instances of the su-

perordinate type in an acceptable way.
Firstly, this hypothesis is supported by the very nature of a business process: Changing it by
adding further parts will always result in additional effort and/or in the consumption of re-
sources. A “specialized” process of this kind will not be acceptable as a substitute. Secondly,
the hypothesis is indirectly supported by the failure of previous attempts: None of those suc-
ceeded in producing a satisfactory solution. Hence, it may seem adequate to not further pur-
sue a specialisation concept for business process types. However, the benefits to be expected
from a corresponding abstraction are appealing. Therefore, it may be an option to make do
with a conception of specialisation that is restricted to functional abstractions of business

process types.

5.1 Focus on Functional Abstractions as an Alternative?

A business process type can be modelled without accounting for the flow of control by only
representing the processes (or function) it includes. A conception of specialisation for func-
tional abstractions could be defined according to that of static abstractions: A business pro-
cess type would be specialized by supplementing its processes with further processes. Dif-
ferent from a dynamic abstraction, the order to processes would not matter. Hence, adding
further features would be monotonic. Every specialized process type would maintain the
features of its superordinate process type. Figure 18 shows how this kind of specialisation

could be applied to a functional abstraction of the above example.

credit
application

calculate
terms&conditions

ap;ﬂigittion credit application
certified firm private customer

determine
options

T

credit
application
business firm

prepare contract

assess collateral elucidate risks

assess risk

Assessment and Consequences

Figure 18: Generalisation/specialisation for functional abstractions of business processes

It seems hopeless to define a conception of specialisation/inheritance for dynamic abstrac-
tions of business process types, because the consequences of adding or deleting processes in
a superordinate business process type cannot be specified on a generic level. As a conse-
quence, it seems that the demand for substitutability cannot be satisfied. If one is content
with functional abstraction and a pragmatic conception of inheritance, two questions need to
be addressed. First: How could one utilize a functional conception of inheritance to support
the convenient and safe construction of business process models, i.e. of dynamic abstrac-
tions? Second: To exploit the potential of inheritance, tool support is mandatory. Therefore
we cannot neglect implementation issues here — even though our main focus is on semantics.
The following example addresses both questions. Figure 19 shows a hierarchy of functional
representations that is based on a pragmatic, functional conception of process inheritance.
Figure 20 illustrates how these inheritance relationships could be represented in a corre-
sponding modelling tool and how they could be used to support the creation of dynamic
abstractions. However, there is still a remarkable challenge to overcome: Reusing an inherit-
ed subprocess in the context of a specialized business process type will usually imply a dif-
ferent context, i.e. different triggering and/or resulting events. Therefore, it is necessary to
define a concept of subprocess that allows for abstracting from the context, i.e. to reduce a
subprocess to its invariant core. In Figure 20 this intended abstraction is represented by a box
inside the process symbols. Specializing the functional abstraction of a business process type
means at first that all processes of the superordinate business process type are inherited.
Subsequently, new processes have to be added and - if necessary — inherited processes are
either modified or deleted. Based on such a definition, a user who wants to specify a busi-
ness process model could be provided with the corresponding functional abstraction, i.e.
with the collection of the included processes. For creating a specialized business process
model, he would access the collection of the specialized functional abstraction, i.e. the inher-
ited ones, the newly added and the modified (see Figure 20). Studying the business process
model of the superordinate business process type may help with defining the control struc-

ture.

To allow for efficient reuse — which includes the support of consistent maintenance - it is
important that inherited processes are represented as references. Every modification to the
process definition in the superordinate business process model would then be immediately
effective in the corresponding subordinate processes. However, it may be that the modifica-
tion should not be effective in the subordinate business process type. In that case, the refer-
ence has to be replaced by a copy of the process specification, which could be modified sub-

sequently.

28

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

specify order

confirm order

electronic order
management deliver

A

specify credit
card

payment

customer
consultation

check
availability

D@D—{}

order management
confirm order

determine
terms&conditions

——» specialized from -

specify credit
modified card
B deleted
payment

Figure 19: Example of pragmatic specialisation of functional abstraction

29

Assessment and Consequences

electronic order
management

specify order

—emor— confirm order

iv QZ"/
i :I . 7 : 7 . 7 I‘. =7 deliver

specify credit
card

payment

=T
order management

[e]
c
o
S
3
o]
[l

consultation

check

)n./ availability
o . 7 e i) yl /. - confirm order
/—) l — l — Py (>/— _X/

determine
terms&conditions

specify credit
card

——ureference to inherited process

[* reference to new or modified process

Figure 20: Constructing dynamic abstractions through references to functional abstractions

Figure 21 illustrates the difficulties related to abstracting a subprocess to its invariant core.
At first sight, the example seems to represent a fortunate situation: “check credibility of new
customer” appears to be a special case of “check credibility of existing customer”. Hence, the
common core could be represented in an (abstract) super process type that can be specialized

into the two concrete types by specializing the corresponding abstract event types.

However, such a conceptualisation is not convincing for two reasons. First, it is based on a
simplification since it does not account for internal differences in processing credibility
checks. Second, it does not completely satisfy the substitutability constraint, since it may
cause the problem of covariant redefinitions: If “check credibility of existing customer” to-
gether with the triggering and resulting specialized event types is substituted for the corre-
sponding abstract concepts, no problem would occur. However, if “check credibility of exist-
ing customer” is used in the general context of “check credibility”, and assigned the resulting
event type “credibility of new customer is ok” — which should be possible, since it is defined

in the super type, a type error would occur.

30

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

credibility of new
customer ok

check credibility

new of new customer -
customer credibility of new
detected customer not ok
order check
received customer credibility of existing
customer ok
L check credibility
existing of new customer
customer
detected
credibility of existing
customer not ok
credibility
ok
customer check credibility
detected
credibility
not ok

check credibility
of new customer

check credibility of
existing customer

Figure 21: Using abstract Super Process Types and Corresponding abstract Event Types to represent

Common Core

Hence, there is need for a relaxed concept of specialisation that fosters reuse but excludes the

problem of covariant redefinitions.

5.2 Instantiation instead of Specialisation?

Apart from aiming at a relaxed conception of process specialisation one could also pursue
different kinds of abstraction. Using process meta models as abstractions over a set of similar
process models could be such an approach. Concrete process types would then be instantiat-
ed from the meta model instead. As a consequence, this approach would require a further
level of abstraction: Usually, the modelling language is specified in a meta model on the M2
level. If the M2 level is used for specifying domain-specific meta concepts of process and
events, an additional Ms layer would be required for specifying the generic language con-
cepts, such as “Event”, “Process” etc. The example in Figure 22 illustrates the idea. The con-

cepts on the Ms level serve to specify a process modelling language that can be used across

31

Assessment and Consequences

various domains. The M2 level serves to represent concepts that are restricted to a narrower
domain, e.g. to one specific organisation only. Hence, the range of reuse is much smaller
compared to the Mz level. In the example in Figure 22 the meta process type “check credibil-
ity” defines the set of possible concrete process types in the targeted domain. A particular
process type on the M1 level would be instantiated from the meta type by specifying a selec-
tion of predefined features, i.e. event types that would be instantiated from meta event types
and procedures (either for manual or machine execution) that would be instantiated by in-
stantiating the meta concepts they include. For instance: If a procedure includes a statement
“check account” where “account” is marked as a meta class, it would have to be instantiated

in a valid instance, e.g. “account receivable”.

While it needs further investigations to adequately assess the potential of this approach, it
comes with a major challenge: Existing language architectures where modelling languages
are specified on M2 and models are typically located on M1 would not be appropriate any-
more. On the one hand, this would imply to redesign modelling languages. On the other
hand, even more challenging, this would require building modelling tools that allow for
multi-level modelling: Users could define their own, local language as an instantiation of a
given language specification. Subsequently they would use their customized concepts in a
corresponding customized modelling tool that would allow for editing instantiations of these

concepts.

In their approach to define process variants Puhlmann et al. use abstract subprocess types
that can be instantiated to concrete subprocess types (Puhlmann et al. 2005). However, they
do not introduce a specification of meta subprocess types. Note that the approach proposed
by Wyner and Lee is aimed at a similar approach. However, they speak erroneously of spe-
cialisation, thereby ignoring the problems related to deal with two different levels of abstrac-

tion.

32

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

"results in "produces
0,1 0,1

results in

Process
"triggers

name: String
type: EventType
description: String| o ;

name: String
description: String | 1 «
type: ProcessType

triggers

11

Branching

type: DecisionType

01

Retrieve previous

payment reminders of
customer L
If number of payment | .
reminders >3 or ...

chefk credit @
history

ssess
__credibility
_

0,* j’
\"_—'\,, 0,* _— 0,1 m
— S *
22 \%/ o
. 1 T
final order 1,* o Check Credibility
management 0%
/Qedibility 0,1
-
_— 1%
/_—
2,2
final credibility
stop
credibility
. insufficient
Order rejected
g e L g
3 W, A— = 5
Gr ©
Order Check credibilit ord
- eck credibili
received v recreijerd Check credibility

sTop

Order
confirmed

Figure 22: Reuse through Instantiation

33

o

credibility ok

Conclusions and Future Research Directions

6 Conclusions and Future Research Directions

Our investigation of abstraction concepts in process modelling in general, of process speciali-
sation in particular resulted in a sobering insight. Compared to static models, there is a tre-
mendous lack of abstraction in process modelling. As a consequence, there is hardly any
support for reuse and secure maintenance. With respect to the relevance of business process
modelling and the growing number of business process models this lack of abstraction cre-
ates a severe problem. Various approaches to define concepts of process variants or process
configurations (Hallerbach 2009, Hallerbach et al. 2009, Schnieders 2008, Gottschalk 2008, La
Rosa et al. 2011, Rosemann and van der Aalst 2007) or rules for constructing valid particular
process models from reference models (Becker at al. 2007, Delfmann 2006) have addressed
this problem in part. However, they remain unsatisfactory to a wide extent. Approaches to
managing process variants lack a general conceptualisation of a common process core, all
versions share — and that could be modified resulting in consistent updates of all versions.
As a consequence, they require sophisticated approaches to managing process variants con-
sistently. Rules for constructing process models from reference models lack the formal se-
mantics that is required for automating the update of process models after a corresponding
reference model had been modified. Apart from that they resemble the instantiation of pro-
cess types presented in 5.2 as they are based on a definition of all possible particular process

types in a reference model — that is, however, on the same level of abstraction.

There seem to be three major directions for future research. Due to the fact that a concept of
process specialisation that would satisfy the substitutability constraint is not feasible, the
only option for further research in this area is to aim at a relaxed conception of process spe-
cialisation that is still beneficial with respect to reuse and maintenance. Introducing a further
level of abstraction to allow for reuse through instantiation seems to be a promising ap-
proach that deserves further research. It is, however, very demanding since it requires new
language architectures and corresponding modelling tools. It also requires advanced users
that are aware of the different levels of abstraction. Parameterized process and event types
offer a further option (Puhlmann et al. 2005) that provides for flexibility without requiring an
additional level of abstraction. Future work on process variants could be aimed at integrat-
ing specialisation, instantiation and parameterization to develop a sophisticated concept of

process variant.

34

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

References

van der Aalst, W.M.P; Basten, T. (1997): Life-cycle Inheritance: A Petri-net-based Approach.
In: Azema, P.; Balbo, G. (Eds.): Application and Theory of Petri Nets 1997. LNCS,
vol. 1248, Springer: Berlin et al. 1997, pp. 62-81

van der Aalst, W.M.P. (1999a): Inheritance of Workflows: An approach to tackling problems
related to change. Computing Science Reports 99/06, Eindhoven University of
Technology, Eindhoven 1999

van der Aalst, W.ML.P. (1999b): Inheritance of Workflow Processes: Four Problems-One Solu-
tion? In: Cummins, F. (Ed.): Proceedings of the Second OOPSLA Workshop on
the Implementation and Application of Object-Oriented Workflow Management
Systems, pp. 1-22, Denver, Colorado, 1999. (Electronic proceedings,
http://st.cs.uiuc.edu/OOPSILLA99/, download 09-08-01)

van der Aalst, W.M.P.; Basten, T. (2002a): Inheritance of Workflows: An Approach to Tack-
ling Problems Related to Change. In: Theoretical Computer Science, 270, 1-2,
2002, pp. 125-203

van der Aalst, W.M.P.; Basten, T. (2002b): Inheritance of Interorganizational Workflows to
Enable Business-to-Business E-commerce. Electronic Commerce Research, Vol.2,
No. 3, 2002, pp. 195-231

van der Aalst, W.M.P. (2003): Inheritance of Business Processes: A Journey Visiting Four No-
torious Problems. In: H. Ehrig, H.; W. Reisig, W.; G. Rozenberg, G.; and H. We-
ber, H. (Eds.): Petri Net Technology for Communication Based Systems. LNCS,
vol. 2472, Springer: Berlin et al. 2003, pp. 383-408

Becker, J.; Delfmann, P.; Knackstedt, R. (2007): Adaptive Reference Modeling: Integrating
Configurative and Generic Adaptation Techniques for Information Models. In:
Becker, J.; Delfmann, P. (Eds.): Reference Modeling. Efficient Information Sys-
tems Design Through Reuse of Information Models. Heidelberg: Physica-Verlag:
Heidelberg 2007, p. 27-58

Bernstein, A.; Grosof, B.; Kifer, M. (2005): Beyond Monotonic Inheritance: Towards Non-
Monotonic Semantic Web Process Ontologies. In: Proceedings of W3C Workshop
On Frameworks for Semantics in Web Service.
(http://www.w3.0rg/2005/04/FSWS/Submissions/45/w3c-ws-submission.html),
download on 2012-05-09

Delfmann, P.(2006): Adaptive Referenzmodellierung: Methodische Konzepte zur Konstruk-
tion und Anwendung wiederverwendungsorientierter Informationsmodelle, Lo-
gos: Berlin 2006

Ducournau, R. (2002): “Real World” as an argument for covariant specialisation in pro-
gramming and modeling. In: Bruel,].-M.; and Z. Bellahsene, Z. (Eds.): Advances
in Object-Oriented Information Systems, OOIS’02 Workshops Proceedings, Lec-
ture Notes in Computer Science, vol. 2426, p. 3-12, Springer: Berlin, Heidelberg,
New York 2002

Ferndriger, S.; Bernstein, A. et al. (2008): Enhancing Semantic Web Services with Inheritance.
International Semantic Web Conference, Karlsruhe 2008, p. 162-177

35

References

Frank, U. (2003): Ebenen der Abstraktion und ihre Abbildung auf konzeptionelle Modelle -
oder: Anmerkungen zur Semantik von Spezialisierungs- und Instanzierungsbe-
ziehungen. In: EMISA FORUM, 23. Jg., Heft 2, 2003, p. 14-18

Frank, U. (2011). MEMO Organisation Modelling Language (OrgML) - Requirements and
Core Diagram Types. ICB Research Report No. 47, University Duisburg-Essen
2011

Gottschalk, F.; van der Aalst, W.M.P.; Jansen-Vullers, M., H. et al. (2008): Configurable Work-
flow Models. In: International Journal of Cooperative Information Systems 17
(02), 2008, p. 177-221

Hallerbach, A. (2009): Management von Prozessvarianten. Dissertation, Universitat Ulm 2009

Hallerbach, A.; Bauer, T.; Reichert, M. (2009): Issues in Modeling Process Variants with
Provop. In: 4th International Workshop on Business Process Design (BPD'08), Mi-
lan 2009, p. 56-67

Kiczales, G., J. Hugunin, et al. (2003). Aspect-Oriented Programming. Technical Report, Palo
Alto Research Center 2003

Kiczales, G.,]J. Lamping, et al. (1997). Aspect-Oriented Programming. European Conference
on Object-Oriented Programming. 1997, p. 220-242

La Rosa, M.; Dumas, M.; ter Hofstede, A. H. M. et al. (2011): Configurable multi-perspective
business process models. In: Information Systems 36 (2), 2011, p. 313-340

Liskov, B. H.; Wing, J. M. (1994): A behavioural notion of subtyping. In: ACM Transactions
on Programming Languages and Systems. Vol. 16, No. 6, 1994, p. 1811-1841

Malone, T.W.; Crowston, K. et al. (1999): Tools for inventing organizations: Toward a hand-
book of organizational processes. In: Management Science, vol. 45, no. 3, 1999, p.
425-443

Meyer, B. (1997): Object-Oriented Software Construction. 2nd Ed., Prentice Hall 1997

OMG (2007): OMG Unified Modeling Language (OMG UML), Superstructure. Version 2.1.2,
2007

OMG (2011): Business Process Model and Notation (BPMN). Version 2.0, 2012,
(http://www.omg.org/spec/BPMN/2.0) download on 2012-05-09

Puhlmann, F.; Schnieders, A.; Weiland, J. et al. (2005): Variability Mechanisms for Process
Models. PESOA-Report Nr. 17/2005, Daimler-Chrysler Research and Technology,
Hasso-Plattner-Institut 2005

Rosemann, M.; van der Aalst, W.,M.,P. (2007): A configurable reference modelling language.
In: Information Systems (32), 2007, p. 1-23

Scheer, A.W. (1999): ARIS — Business Process Modeling. 3rd Edition. Springer: Berlin, Hei-
delberg, New York 1999

Schnieders, A. (2008): Modellierung und Instantiierung variantenreicher Prozesse in der
Softwareproduktfamilienentwicklung. Dissertation, Universitat Potsdam 2008

Schrefl, M.; Stumptner, M. (2002): Behaviour-Consistent Specialisation of Object Life Cycles.
In: ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 1,
2002, pp. 92-148

36

Specialisation in Business Process Modelling: Motivation, Approaches and Limitations

Wegner, P.; Zdonik, S.B. (1988): Inheritance as an Incremental Modification Mechanism or
What Like Is and Isn’t Like. In: Gjessing, S.; Nygaard, K. (Eds.): Proceedings
ECOOP ‘88, LNCS 322, Springer: Berlin, Heidelberg, New York 1988, pp. 55-77

Wyner, G.M.; Lee, J. (1995): Applying Specialisation to Process Models. In: Proceedings of
Conference on Organizational Computing Systems. Milipitas, Ca., 1995, pp. 290-
301

Wyner, G.M.; Lee, J. (2002): Process Specialisation: Defining Specialisation for State Dia-
grams. In: Computational & Mathematical Organization Theory, Vol. 8, No. 2,
2002, pp. 133-155

37

Previously published ICB - Research Reports

Previously published ICB - Research Reports

2012
No 50 (March)
Adelsberger, Heimo; Drechsler, Andreas; Herzig, Eric; Michaelis, Alexander; Schulz, Philipp; Schiitz,
Stefan; Ulrich, Udo: “Qualitative und quantitative Analyse von SOA-Studien — Eine Metastudie zu
serviceorientierten Architekturen”
2011
No 49 (December 2011)
Frank, Ulrich: “"MEMO Organisation Modelling Language (OrgML): Focus on Business Processes”
No 48 (December 2011)

Frank, Ulrich: “"MEMO Organisation Modelling Language (OrgML): Focus on Organizational Struc-
ture”

No 47 (December 2011)

Frank, Ulrich: “MEMO Organisation Modelling Language (OrgML): Requirements and Core Diagram
Types”

No 46 (December 2011)
Frank, Ulrich: “Multi-Perspective Enterprise Modelling: Background and Terminological Foundation”
No 45 (November 2011)

Frank, Ulrich; Strecker, Stefan; Heise, David; Kattenstroth, Heiko; Schauer, Carola: “Leitfaden zur
Erstellung wissenschaftlicher Arbeiten in der Wirtschaftsinformatik”

No 44 (September 2010)
Berenbach, Brian; Daneva, Maya; Dorr, Jorg; Frickler, Samuel; Gervasi, Vincenzo; Glinz, Martin;
Herrmann, Andrea; Krams, Benedikt; Madhavji, Nazim H.; Paech, Barbara; Schockert, Sixten; Seyff,
Norbert (Eds): “17th International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2011). Proceedings of the REFSQ 2011 Workshops REEW, EPICAL and
RePriCo, the REFSQ 2011 Empirical Track (Empirical Live Experiment and Empirical Research Fair),
and the REFSQ 2011 Doctoral Symposium™

No 43 (February 2011)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Lnguage Architecture — 2nd Edi-
tion”
2010
No 42 (December)

Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”

No 41 (December)

Adelsberger,Heimo,; Drechsler, Andreas (Eds): “Ausgewihlte Aspekte des Cloud-Computing aus einer
IT-Management-Perspektive — Cloud Governance, Cloud Security und Einsatz von Cloud Computing
in jungen Unternehmen”

No 40 (October 2010)
Biirsner, Simone; Dorr, Jorg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;
Merten, Thorsten; Pietsch, Wolfram; Schinid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):
“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-
ty. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC”

No 39 (May 2010)
Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption fiir den Studien-
gang M.Sc. Wirtschaftsinformatik an der Fakultit fiir Wirtschaftswissenschaften der Universitit Duis-
burg-Essen”

No 38 (February 2010)
Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschitzungen von CIOs und
WI-Professoren”

No 37 (January 2010)
Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-
ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)
Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verstindnis der IT-Governance - An-
regungen zu einer kritischen Reflexion”

No 35 (August 2009)
Riingeler, Irene; Tiixen, Michael; Rathgeb, Erwin P.:”Considerations on Handling Link Errors in
STCpP”

No 34 (June 2009)
Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on
Service Monitoring, Adaption and Beyond”

No 33 (May 2009)
Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-
ger, Jan; Rosenberger, Marcel; Trepper, Tobias: , Einsatz von Social Software in Unternehmen — Studie
iiber Umfang und Zweck der Nutzung”

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kiitz, Martin; Riiding, Otto; Schauer, Hanno, Strecker, Stefan:
. Leitbild IT-Controller/-in — Beitrag der Fachgruppe IT-Controlling der Gesellschaft fiir Informatik
e. V. g

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-
tems — Requirements, Conceptual Foundation and Design Options”

Previously published ICB - Research Reports

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: , Kriterien guter Wissensarbeit — Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)”

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-
iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: , Computer Aided Assessments and Programming
Exercises with JACK”

No 27 (December 2008)
Schauer, Carola: “GrifSe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universititen im
deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Miiller-Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am
Beispiel der CRC Card-Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture — Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jiirgen: “Enterprise Modelling in the Context of Manufacturing — Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software-intensive Systems”

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilitit im Geschiftsprozess-management-
Kreislauf”

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradiiberwachung von Software”

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ,Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen fiir die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of
Model Curricula”

No 16 (May 2007)
Miiller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-
pacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen fiir IT-Professionals — Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden fiir Soft-
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstiitzung der Aufgaben des
IT-Managements — Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einfiihrender Lehrbiicher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Uberlequngen zur Qualifizierung des wissen-
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag fiir ein Forschungspro-
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-
search”

No 6 (April 2006)
Frank, Ulrich: ”Evaluation von Forschung und Lehre an Universititen — Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jiirgen: “Supply Chains in the Context of Resource Modelling”

Previously published ICB - Research Reports

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I1I — Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part II — Results Information Sys-

tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I — Research Objectives and

Method”

No 1 (August 2005)
Lange, Carola: , Ein Bezugsrahmen zur Beschreibung von Forschungsgegenstinden und -methoden in

Wirtschaftsinformatik und Information Systems”

Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Core Research Topics

E-Llearning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank

Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Componentbased and Generative
Software Development

PD Dr. C. Kliver
Computer Based Analysis of Social Complexity

Soft Computing, Modeling of Social, Cognitive, and
Economic Processes, Development of Algorithms

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Miiller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Infernet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

For more information visit us on the Web: http://www.icb.uni-due.de

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

	DocumentServlet-1.537.191.242.217
	ICB-Report_No51

