
Association Types: Motivation, Specification and Implementation
with the XModelerML©

Ulrich Frank
Universität Duisburg-Essen

Essen, Germany
ulrich.frank@uni-due.de

Daniel Töpel
Universität Duisburg-Essen

Essen, Germany
daniel.toepel@uni-due.de

ABSTRACT
Associations represent an essential concept of multi-level models.
While it is obvious that allowing for an unrestricted number of
classification levels of objects is beneficial, associations are usually
defined at one level only. There are, however, reasons to enable the
definition of association types. Against the background of the expla-
nation of these reasons, we analyze requirements for the semantics
of association meta-types and the functionality of corresponding
tools. Subsequently, an extension of the FMMLX metamodel is
presented that forms the foundation of the implementation of asso-
ciation meta-types. Despite being focused on the FMMLX and the
XModelerML©, it should also serve as an orientation for respective
extensions of other multi-level languages and modeling environ-
ments. The concept and its implementation are evaluated against
the requirement and compared to related work.

CCS CONCEPTS
• Software and its engineering → Object oriented architec-
tures; Domain specific languages.

KEYWORDS
Association, Multi-Level Modeling, Underspecification, FMMLX

ACM Reference Format:
Ulrich Frank and Daniel Töpel. 2024. Association Types: Motivation, Spec-
ification and Implementation with the XModelerML©. In ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems
(MODELS Companion ’24), September 22–27, 2024, Linz, Austria. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3652620.3688210

1 INTRODUCTION
Objects and classes respectively are at the core of multi-level lan-
guage architectures, since they form the basis for defining essential,
undisputed characteristics of multi-level models: every class is an
object and there is an arbitrary number of possible levels. In ad-
dition, attributes and corresponding slots (see [9]) as well as, to a
lesser extent, operations received considerable attention, too. They
allow the definition of deferred instantiation, which is a mandatory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3688210

feature for making use of higher level classes as powerful abstrac-
tions. In contrast, associations seem to have been rather neglected
in modeling research. Or, in other words, traditional conceptions of
associations may have been regarded as sufficient for multi-level
modeling, too. This was, at least, the assumption the specification
of the FMMLX (“Flexible Multi-Level Modeling Language”) [4, 5]
was based on.

Nevertheless, it has been obvious for some time that associa-
tions deserve more attention [1]. This is for various reasons. The
terminology commonly used, including by us, is slightly mislead-
ing. Often, one speaks of associations that are “instantiated” into
links, indicating correspondences of associations and classes and of
links and objects. However, usually associations are not specified
as classes, nor are links specified as objects. Therefore, it is, e.g., not
possible to ask a link for the association it has been “instantiated”
from. Also, and more important, there are differences regarding the
specification of associations, which so far have been analyzed to a
limited degree only (for a detailed analysis of specific differences
see [14]). While, for example, the LML allows associations to be de-
fined only between classes located at the same level, this restriction
does not apply to other approaches (for a respective comparison
of the LML and the FMMLX see [10]). Hence, there is no common
notion of association.

At the same time, a closer look at associations leads to a number
of open questions concerning possible requirements and their im-
plementation. Töpel presents a comprehensive list of requirements
[14]. Among others, it comprises a demand for underspecification
and for enabling dependencies between associations. Underspec-
ification refers, e.g., to the possibility to not completely specify
multiplicities of associations defined between classes at higher lev-
els. Defining an association as dependent of another association
allows to restrict the set of links it is an abstraction of. On a more
general level, Töpel called for a concept of association that supports
reuse and integrity by including domain-specific semantics.

This paper ties in with the last two points. It is focused on meta-
associations, that is, on a concept that allows for the specification
of association types. To that end, we will at first motivate the need
for association types through selected use cases. After that, related
requirements are presented. Against this background, we will then
discuss design options and present a specification of association
types and their implementation in the XModelerML©. Subsequently,
the presented solution is compared to related work. Note that we
use a special terminology for expressing multi-level concepts that
was inspired by [12] and described in more detail in [6]. Of partic-
ular relevance are the following terms. Instead of “instantiation”,
we speak of “concretization” in cases where traditional instantia-
tion is accompanied by inheritance. Also, we refer to the tree of
classes that are concretized from a class and its concretizations as

https://orcid.org/0000-0002-8057-1836
https://orcid.org/0000-0001-6351-5624
https://doi.org/10.1145/3652620.3688210
https://doi.org/10.1145/3652620.3688210

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ulrich Frank and Daniel Töpel

a “concretization subtree”. Properties of a class like attributes or
associations that are meant for deferred instantiation are called
“intrinsic”. To avoid confusion, we use an “L” for marking levels
instead of the “M” known from the MOF.

2 MOTIVATION
In recent years, our work on multi-level languages and models
led to a growing need for the possibility to specify association
types. The previous implementation did not allow for that. The
core FMMLX metamodel did not cover associations. Instead, the
use of associations was addressed only by additional classes such
as Association or End at L1. In other words: associations were
restricted to one generic, predefined association type. There were
only two exceptions of this limitation. As a measure to avoid the
counter-intuitive use of specialization relationships, we added del-
egation as a an additional association type [8]. It was, however,
specified and implemented separately from the default association
type. The only way to express further, domain-specific “types” was
through the attribute type in Association, see Fig. 1.

0,1

0,1

1,1

2,2

1,10,*

uinherits from uinherits from

0,*

0,*

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

Multiplicity

lowerBound: Integer

upperBound: Integer

hasUpperBound: Boolean

Multiplicity

type: AssocType

Association

type: AssocType

Association

new() : Object

name: String

isAbstract: Boolean

Class

new() : Object

name: String

isAbstract: Boolean

Class

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

name: String

isIntrinsic: Boolean

instLevel: Integer

isNavigable: Boolean

isCore: Boolean

End

2,2

Figure 1: Previous specification of associations within the
FMMLX

We first ran into the limitations of such a workaround when we
designed multi-level modeling languages (DSMLs) with a specific
concrete syntax. The concrete syntax of a DSML may require differ-
ent kinds of associations to be distinguished in order to improve a
diagram’s comprehensibility. For example, a language for modeling
IT infrastructures may include “uses” associations between classes
representing software systems, and “runs on” associations between
classes representing software systems and other classes represent-
ing platforms. Without some kind of abstraction over associations
of a certain kind, it is not possible to specify a common graphical
notation shared by all these associations. Furthermore, the differ-
ent kinds of associations also show clear semantic differences. For
example: while an application system may use a DBMS, it must
not run on it. Since this constraint applies to all associations of this
kind, it should be possible to specify it only once, which was not
possible in the previous implementation.

This limitation of the previous implementation was confirmed by
other use cases. To give one example only: a language for modeling
organizational structures should include an association to express
a relation between a line manager and her staff members. First,
such an association is characterized by a strict 1..1 multiplicity on
the side of the manager class. Second, apart from being restricted
to classes that qualify to represent managers, it may also imply
further semantic restrictions, e.g. concerning the age or the formal
qualification of a manager in relation to the qualification of the
corresponding staff members.

A further aspect that motivated our work on association types
relates to dependencies between associations. Assume, for example,
a multi-level model of cars would include an association between
CarModel and TireType, both at L2, that allows assigning approved
tire types (both at L1) to a certain car model. A further association,
also defined at L2 but instantiated at L0 that serves the description
of the particular tires mounted on a particular car would then be
dependent on the first association in the sense that only those tires
may be mounted on a car the types of which are approved for
the car’s model. In the previous version, this kind of dependency
needed to be expressed by additional constraints (see example in
[7]. It would be an obvious contribution to reuse, if there was a
language concept that allowed for expressing this dependency. At
the same time, such a concept could jeopardize model integrity, if it
allowed for defining dependencies between any kind of associations.
Without meta associations, this could hardly be prevented. A more
precise definition of dependencies will be given in Section 4.

Finally, association types may help with model analysis. Imagine,
for example, one needs to search for certain kinds of associations
within one or multiple models. Without associations types that
correspond to these kinds of associations, specifying such a search
would be a complex undertaking.

An association type serves the specification of properties shared
by a set of associations. First, it constrains the classes between
respective associations. Second, it may constrain the multiplici-
ties allowed for these associations. Furthermore, it may comprise
further more specific constraints. In addition to these semantic
characteristics, an association type may also serve the definition
of a concrete syntax that applies to all respective associations. In
Sections 3 and 4 this preliminary concept of association type will
be refined.

3 REQUIREMENTS
The quest to enrich the FMMLX with meta associations led to a few
general questions:

• What is an association and what are links?
• What is an association type or an association meta type?
• Related to the previous one: what are specific, invariant
characteristics of certain kinds of associations that could be
abstracted into an association type?

• Should an association meta type also allow to be instantiated
into generalization/ specialization or delegation?

• How many levels of association types are required?
In general, associations between classes serve the specification of

the set of possible links between instances of these classes. Within
the UML, associations may be defined between more than two

Association Types: Motivation, Specification and Implementation with the XModelerML© MODELS Companion ’24, September 22–27, 2024, Linz, Austria

classes. The UML also allows for links to have a state. We do not
follow the UML here, because we assume that a clear distinction of
classes and associations contributes to a more comprehensive and
consistent language design. That leads to a preliminary conception
of an association as a relationship between two classes that specifies
the set of possible links between instances of these classes. A link
between two objects allows one object to navigate to the other. In
case of a unidirectional association, only one of the two can navigate
to the other, while a bidirectional linkage allows for navigating in
both directions. There are different approaches to implement links,
which are not essential for the notion of an association.

The use of associations in multi-level models suggests to extend
this definition. The design of a multi-level model recommends ex-
pressing knowledge about the targeted domain at the highest level
possible in order to avoid conceptual redundancy [6] or, in other
words, accidental complexity. To this end, the FMMLX provides
intrinsic associations that serve the definition of associations that
can be concretized to at a lower level. When we, e.g., define classes
such as Computer and PeripheralDevice at L3, we already know
that particular computer models, represented at L1, may be linked
to particular peripheral device models at L1. This knowledge can
be expressed by defining that the association uses, even though de-
fined at L3, represents a set of links at L1 only. Note that the FMMLX
allows associations between classes at different levels, since this
has proven to be extremely useful.

An association meta type, on the other hand, goes clearly beyond
intrinsic associations, since it allows to define semantics shared by
a set of congenial associations. Aspects of association type seman-
tics include the classes, associations of this type may connect, the
multiplicities, as well as further constraints. For example, an associ-
ation type eligiblemay be defined for connecting classes that are
concretized from the classes Position and OrganizationalRole
(and only from these!), e.g, between the classes SoftwareAnalyst
and SoftwareReviewer.

Hence, an association type requires the specification of two
classes A and B, with A at Ln and B at Lm, where n > 1 and m > 1
(m and n do not have to be equal). An association of a particular
association type can then be defined between classes C and D,
where C is element of A’s concretization tree, and D is element
of B’s concretization tree. In addition, an association type may
comprise further constraints that refer to the state of associated or
linked objects.

While regarding generalization/specialization as specific types
of a general association meta type may seem like an attractive op-
tion, there would be little benefit of such an abstraction and, at the
same time, a considerable growth of complexity with respect to
its specification. Obviously, the commonalities between “regular”
association types and generalization/specialization are very lim-
ited, while the semantic differences are substantial. Therefore, we
decided against this option.

Different from generalization/specialization, there are clear com-
monalities between delegation and “regular” association types. At
the same time, however, delegation comprises specific peculiarities,
which are not shared by other association types. In addition, the
XModelerML© already includes a well working implementation of

delegation [8]. Therefore, we did not see the need to make it an
element of the targeted association meta types.

It turned out that determining the number of required associ-
ation levels quickly exceeded the scope of our imagination. To
address this question and to develop more specific requirements,
we performed a methodical analysis of examples. To that end, we
referred to a repository of multi-level models we created over the
last years. In addition, we created new examples with specific em-
phasis on associations. The following list represents the result of
the requirements analysis. It distinguishes between requirements
that concern language semantics and those that relate primarily to
a corresponding model tool. The first are numbered with “Sn”, the
latter with “Tn”.

Requirement S1: It should be possible to define specific associa-
tion types as language extensions. Rationale: Enabling the definition
and use of specific association types fosters reuse, hence modeling
productivity, integrity, and contributes to maintainability, too.

Addressing this requirement implies a conception of association
type, that is, of the characteristic features that are subject of an
association type specification.

Requirement S2: To enable the specification of an association
type, it should be possible to restrict the set of classes, between
which corresponding associations may be established. It also calls
for the specification of multiplicities and further constraints. Ratio-
nale: These are characteristic features of associations.

Our analysis of various example models revealed that require-
ment 2 needs to be refined to fit the peculiarities of multi-level
models. For instance, IT management may have defined the policy
that a maximum of two printers may be attached to a computer, but
only one scanner (both at L0). Within a corresponding multi-level
model, any multiplicity defined with the intrinsic association at L3
between classes like Computer and PeripheralDevice could not
cover all cases adequately, and, hence, would allow for a violation
of the policy.

Requirement S3: It should be possible to underspecify the
definition of multiplicities that characterize an association type.
Rationale: Depending on the classes concretized at lower levels,
multiplicities may vary. Underspecified multiplicities indicate the
need for refinement at a lower level.

Note that S3 applies only in cases where the principle character
of an association does not differ too much. Otherwise, the idea of
an association type would be compromised.

Requirement T1: Upon the creation of an association the type
of which includes underspecified multiplicities, a modeling tool
should guide users with properly filling the remaining specification
gaps. Rationale: This is a prerequisite for the consistent use of
underspecified multiplicities.

Constraints are an important instrument to refine the semantics
of modeling concepts. That leads to requirements regarding the
specification of constraints.

Requirement S4:The specification of an association type should
allow for the definition of constraints that refer to the state of linked
objects. Rationale: The proper use of associations of a certain type
may restrict the permitted states of objects that are linked according
to an association of this type.

Assume, for example, an association type approvedBy that is de-
fined for concretizations of the classes EducationalInstitution

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ulrich Frank and Daniel Töpel

and Accreditation, both at L2 (see Fig. 2. While the range of
classes, associations of this type may be applied to, is restricted
only through the respective classes, links that may be created as “in-
stantiations” of these associations are only permitted in those cases
where an educational institution is older than 5 years. Apparently,
this constraint can be applied only to classes that define intrinsic
properties that are initialized at the level where links would be
created.

^MetaClass^

2 Accreditation

program: String[1]1

performed: Date[1]0

^MetaClass^

2 EducationalInstitution

founded: Date[1]0

0 age(): Integer

Figure 2: Restrictions concerning states of linked objects

Requirement T2:The specification of an association type should
allow for restricting the range of objects it is applicable to. Ratio-
nale: There are cases, where an association type is restricted to
specific classes that are concretized from generic classes, where it
would be misleading to define a specific constraint for all possible
concretizations. Assume, you want to introduce an association type
marriedTo. Its use should be restricted to classes representing hu-
man beings. Furthermore, assume there is no reason to introduce a
further specific (meta) class of a Person. Instead, Person is instan-
tiated from the generic class Class. Apparently, it would make no
sense to allow for using marriedTo between all possible instances
of Class.

In multi-level models, the legitimate use of an association of a
certain type may also be restricted by the state of the classes partici-
pating in this association, which leads to the following requirement:

Requirement S5:The specification of an association type should
allow for the definition of constraints that refer to the state of classes
participating in an association of this type. Rationale: The example
in Fig. 2 is suited to illustrate this case, too. A certain accreditation
type at L1, e.g., for approving Master’s programs in computer sci-
ence, may be associated only with those institutions at L1 that offer
Master’s programs.

Requirement S6: It should be possible to define that only asso-
ciations of a certain type may depend on associations of another
certain type. Rationale: While allowing for defining dependencies
between any kind of associations promotes flexibility, it may also
be a threat to model integrity, since there are many cases where
a dependency would be completely absurd. Therefore, modelers
should be given the choice between the two alternatives.

To further refine this requirement, a more precise definition of
dependencies between associations is required. For an association
c1 between the classes A1 at Ln and B1 at Lm to depend on an
association c2 between the classes A2 at Li and B2 at Lj, the follow-
ing prerequisites need to be satisfied: n <= i and m <= j. Then, for
every link “instantiated” from c1 there must be a corresponding
link “instantiated” from c2. The examples in Fig. 3 illustrate what
“corresponding” may mean.

Assume that in the above example the association issuesOrder
depends on the association registeredAt. For a link created be-
tween two objects p1 and s1 created from issuesOrder to be valid,

1..4
0..1

0
0 mountedOn (dependsOn approvedFor)

1..*0..*

11
approvedFor

^Car^

2 CarModel

numOfDoors: Integer[1]1

fuelCons: Float[1] (from Car)1

weight: Float[1] (from Car)1

serialNo: String[1] (from Car)0

passenger = true

^Part^

2 WheelType

size: Integer[1]1

weight: Float[1] (from Part)1

produced: Date[1] (from Part)0

original = false

Figure 3: Illustration of dependencies between associations

there needs to be a corresponding link between both objects that
was created from registeredAt.

The following requirements concern the design of corresponding
tooling.

Requirement T3: It is required that a modeling tool supports
the consistent use of association types. That includes detecting and,
if possible, preventing violation of implicit and explicit constraints.
Rationale: Since semantics of association types can become rather
complex, tool support is mandatory to avoid integrity problems.

Requirement T4: A modeling tool should handle association
types like any other language concept, e.g., by including them in
the palette upon their creation. Rationale: A natural integration
of association types with other language concepts facilitate the
convenient (re-) use of association types.

Further requirements regarding the modeling tool relate to sup-
port formodelmanagement, that is for supporting consistent change
operations.

Requirement T5: It should be possible to edit the specification
of an association type after associations of this type have been
created. Rationale: This kind of change is hard to avoid. If it happens,
tool support is important to cope with complexity.

Relaxing the constraints that define the semantic of an associa-
tion type will usually be less challenging than further restricting
them.

Requirement T6: A modeling tool should allow for deleting
association types. Since this suggests deleting corresponding asso-
ciations first, the tool should support identifying these. Rationale:
In case an association type turns out as a misconception, it should
no longer remain in a system.

Concerning the required number of abstractions over associa-
tions, that is, association type, association meta type, etc., we found
a few cases where additional levels above association types would
make sense. One example is marriage. Due to the fact that there
are different kinds of constraints that apply to marriage depending
on country and culture, one could think of a meta-association that
represents the commonalities of all these different types, such as,
e.g. that marriage is only possible between human beings. Other
cases relate to different legal regulations, too. For example, issu-
ing an order is possible between humans or organizations on the
one side, and humans and organizations on the other side. With
respect to humans, there exist different regulations concerning age,
and maybe, gender, of the customer. We came, however, to the
conclusion that these cases do not constitute urgent requirements.
At the same time, introducing higher levels of association types
would clearly contribute to complexity and, likely, to confusion.

Association Types: Motivation, Specification and Implementation with the XModelerML© MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Therefore, we decided to restrict the implementation to one meta-
association only. Nevertheless, we accounted for this case with the
final requirement.

Requirement S7: The specification of an association meta-type
should be extensible in the sense that it allows for adding further
levels of association types. Rationale: With more cases that may
appear in the future, it may turn out that the benefit of additional
levels of association types would justify the corresponding imple-
mentation effort.

4 DESIGN AND IMPLEMENTATION
As a comprehensive language engineering tool that allows for an
arbitrary number of classification levels, the XModeler provides a
strong foundation for developing a specification and a correspond-
ing implementation that satisfy the requirements described above.
However, the XModeler as well as the FMMLX, which is an ex-
tension of XCore, the metamodel, the XModeler is based on, treat
associations originally as second class citizens. They are not part
of the XCore. Instead, they are defined in an additional package
named Associations (see Fig. 4). Within that package, the class
Association is located at L1. Hence, it can be instantiated to an
association, which does not allow for further instantiation (which
is the reason, why a link does not qualify as an instance of an asso-
ciation). In order to enable association types, it must be possible
to somehow enable an association meta type. With respect to re-
quirement S7, it should furthermore be possible to later add further
levels of association types.

In the following, we first describe the modifications made to the
metamodel, to then elucidate selected details of the corresponding
implementation. Subsequently, the implementation it illustrated by
a demonstration of corresponding features of the XModelerML©,
which is the version of the XModeler that implements the FMMLX.

4.1 Metamodel
To enable additional levels of association types, we made use of
the recursive construction of XCore that enables multiple levels of
classification. As a default, Class is located at L2. Hence, creating
an instance of Class produces a class C at L1. To allow for placing C
on whatever classification level you want, the following mechanism
is applied. To lift C from L1 to L2, C inherits from Class. Then C
is instantiated to C1 (at L1), which would then inherit from Class,
too, thus lifting C1 to L2 – and C implicitly to L3. By repeating
this procedure C can be lifted to any level. The implementation of
the FMMLX within the XModelerML© hides this approach from the
user and allows for the direct creation of classes at any level the
user wishes for.

Note that assigning levels to associations and association types
may cause confusion. From a conceptual perspective, an association
is instantiated from an association type and “instantiated” into a
link. That would suggest placing association types at L2, associ-
ations at L1 and links at L0. However, from an implementation
perspective, a particular association is located at L0. A correspond-
ing link is not an instance of an association, but realized through
slots that store object references, which is similar to the relation
between attributes and slots. Hence, in this view, an association
type is at L1. To support a conceptual perspective on associations

without compromising the implementation view, we use a specific
scheme to describe levels related to associations. Levels in this
scheme are numbered with the prefix “AL”. According to this view,
an association type is located at AL2, an association at AL1.

We adapted this approach to allow for multiple levels of associ-
ations, too. At first, we restricted the extension to one additional
level, that is, to the definition of association types at L1 or AL2
respectively. That requires an association meta type at L2 (AL3). In
order to achieve this, the AssociationType inherits from Class
(Req. S1). As a consequence, AssociationType is not only located
at L2, it can also be associated with constraints, which are required
to refine the semantics of association types.

It is important to know that these classes are not defined with
the FMMLX, because the extension should not affect existing mod-
els/packages within the XModeler. Therefore, it is not possible to
assign explicit levels to these classes and, more important, to define
intrinsic properties for deferred instantiation. That created a prob-
lem, because certain properties of associations are already known at
the type level: every instance of an association requires links to ei-
ther one (in case of a uni-directional association) or both associated
classes (in case of a bi-directional association). Therefore, it should
be possible to define them already there to avoid conceptual redun-
dancy. To achieve this, the abstract class AbstractAssociation
was introduced (Req. S2). It is located at L1 and defines the attributes
source and target. Furthermore, an association should be charac-
terized by a name. Therefore, AbstractAssociation inherits from
NamedElement and not from Class, because that would have lifted
it to L2.

A particular association type is created in a two-step process.
First, the association type is instantiated from AssociationType.
Second, the association type inherits from AbstractAssociation.
This is to make sure that every association type (at L1 or AL2)
has the attributes name, target, and source, which in turn serve
the definition of corresponding slots within a particular associa-
tion. Fig. 4 shows the extended, slightly simplified metamodel. It
is restricted to those classes and properties that are essential for
understanding the specification of association types.

The metamodel consists of classes that are part of XCore and
those that were added for the definition of the FMMLX. Associations
are defined in the additional package Associations. The class
AssociationType serves the creation of association types. Since it
inherits from Class, it is located at L2 (or AL3 respectively).

4.2 Implementation
The implementation for S1,S2 and S3 mainly consists of four parts.
First, the extension of the metamodel had to be implemented. Sec-
ond, the specification of semantic properties of an association type
was addressed by providing users with a template that allows to fill
in implicit constraints on multiplicities. Third, constraints had to be
added to ensure that associations indeed conform to the restrictions
on an association type supplied by a modeler. Fourth, the diagram
editor had to be adapted to allow for displaying a specific notation
defined for associations of a certain type.

The metamodel extension takes place in the Associations pack-
age as shown in Fig. 4. From the perspective of classes there are

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ulrich Frank and Daniel Töpel

visible: Boolean[0..1]

^XCore::Class^

Associations::End

2..2

1..1

hasEnds

^AssociationType^

Associations::Aggregation

^AssociationType^

Associations::DefaultAssociation

^AssociationType^

Associations::Composition

assocName: String[1..1]

^XCore::Class^

Associations::AbstractAssociation

hasBody
1..1

hasReason
1..1

hasParents
0..*

^Class^

XCore::Classifier

default: Element[0..1]
hasType1..1

0..*1..1 hasAttributes

isRestrictedTo

^XCore::Class^

FMMLx::MetaAdaptor

new(level: Level): Element

^XCore::Class^

FMMLx::Level

maxLevel: Integer[0..1]

minLevel: Integer[1..1]

^Class^

XCore::Object

checkConstraints(): ConstraintReport

^Class^

XCore::NamedElement

name: String[0..1]

^Class^

XCore::Class

constructors: Seq(Constructor)[$0..*]

isAbstract: Boolean[0..1]

delegatesTo: Class[0..1]

new(): Element

allInstances(): Set(Element)

XCore::Package

^Class^

hasClasses 0..*

0..1

includes 0..*

1..1

FMMLx::FmmlxPackage

^XCore::Class^

sourceLevel: Element[0..1]

sourceMult: Integer[4..4]

targetLevel: Element[0..1]

targetMult: Integer[4..4]

^XCore::Class^

Associations::AssociationType

2..2

^Class^

XCore::Constraint

instLevel: [FMMLx::Level] ^Class^

XCore::Attribute

instLevel: [FMMLx::Level]

init: Operation[0..1]

isIntrinsic: Boolean[0..1]

mult: Multiplicity[1..1]

XCore::TypedElement

^Class^

hasOperations 0..*

0..1 hasConstraints

0..*

1..1

0..*1..1 hasAssociationTypes

^XCore::Class^

FMMLx::FmmlxObject

level: [FMMLx::Level]

isDescendantOf(Element):Boolean

allAncestors(): Set(Class)

get(attName:String): Element

^Class^

XCore::DataType

^Class^

XCore::CompiledOperation

codeBox: Element0..1]

arity: Integer[0..1]

isIntrinsic: Boolean[0..1]

instLevel: [FMMLx::Level]

^MetaAdaptor^

FMMLx::MetaClass

isSingleton: Boolean[0..1]

Figure 4: Simplified version of the extended metamodel

no structural changes, as classes refer to association ends as be-
fore. There is now a class AssociationType at AL3, which can be
instantiated into an association type on AL2. This class holds the
constraints on multiplicities and the involved classes defined by
the modeler. Currently, this class also holds the specification of the
visual appearance of the associations (on AL1) and links (on AL0),
which is faded out in Fig. 4,

Due to a lack of deferred instantiation in the core packages,
AssociationType on AL3 cannot define general properties of as-
sociations on AL1. As already mentioned above, these are instead

defined in the abstract class AbstractAssociation on AL2, which
all association types on AL2 have to inherit from. This is ensured
by the constructor of AssociationType and also by the constraint
in Listing 1.

The former class Association has been replaced by the new
class DefaultAssociation (on AL2), which is an instance of the
newly created meta-class AssociationType and as mandated by
Listing 1, a subclass of AbstractAssociation. It has no restric-
tions on the involved classes nor the multiplicities. This is done
by setting Object as the required class, and setting lower bounds

Association Types: Motivation, Specification and Implementation with the XModelerML© MODELS Companion ’24, September 22–27, 2024, Linz, Austria

context Associations :: AssociationType
@Constraint assocTypeInheritAbstract

self.parents.contains(Associations :: AbstractAssociation)
fail
"This association type does not inherit from AbstractAssociation"

end

Listing 1: An association type on AL2 must inherit from
AbstractAssociation

of several properties to 0, and not setting an upper bound. The
implementation also includes Aggregation and Composition on
AL2 which also have no restriction on the involved classes but
for the multiplicities. They also have a different appearance. To
add a customized association type, the modeler needs to supply
the respective information, e.g. through the dialog in Fig. 5. These
association types are added to the package and become available for
the modeler to choose from alongside the three default association
types, when they intend to add an association (see Fig. 6).

context Associations :: AbstractAssociation
@Constraint assocMatchMetatype

self.source.type.isKindOf(self.sourceRestriction.type)
and

(self.source.type.isKindOf(FMMLx:: MetaClass) ⇒
self.source.type.level.matches(self.sourceLevel))

and
[ditto for target side]

fail
"This association cannot be drawn between these classes"

end

Listing 2: An association on AL1 can only be drawn between
appropriate types

There are two constraints checking whether an association con-
forms to the association type. The first, in Listing 2, checks whether
both involved classes are of the correct type, and if they are FMMLX-
classes, the level is checked as well. The other constraint checks
the multiplicities. This constraint, which is not shown here, calls
an operation producing a list of problems, and checks whether the
list is empty. The operation is shown in Listing 3.

The multiplicity restrictions are stored in an array of four num-
bers. The first two are the upper and lower bounds of the actual
lower bound, while the last two restrict the upper bound. The value
null indicates infinity. For example, the restriction [1, 4, 3, 𝑛𝑢𝑙𝑙]
would indicate that the lower bound must be between 1 and 4,
while the upper bound must be 3 or higher. This would allow the
multiplicity 2..6, but prevent 2..2, as the upper bound is too small
or 0..∗, as the lower bound is too small.

To allow for a customized appearance of associations and links,
various options are conceivable. To provide for a proof of concept in
general, the implementation is currently restricted to a set of prede-
fined shapes to choose from. The current implementation of edges,
which include associations and links, is a series of straight lines
connected at right angles and joining the nodes, i.e., objects and
classes, at so called ports. These may be with or without decorations.
User can customize the notation of associations by defining color,
width, and form (solid or dashed). Dashed lines are represented
by an integer array of even size, indicating the length of the lines
and the gaps of the repeating line pattern. Also, end decorations

@Operation checkMultiplicities ()
l e t issues = {} in

i f self.of().sourceMult = null
then issues := issues + {"No multiplicity rules for

source supplied ."}
e l s e i f not self.source.mult.isKindOf(Multiplicities ::

CollectionMult)
then issues := issues + {" Source multiplicity must be of

type Multiplicities :: CollectionMult ."}
e l se

i f self.source.mult.lowerBound < self.of().sourceMult.at
(0) then

issues := issues + {" Source lower bound too small"}
end;

i f self.of().sourceMult.at(1) <> null andthen self.
source.mult.lowerBound > self.of().sourceMult.at(1) then

issues := issues + {" Source lower bound too large"}
end;

i f self.source.mult.hasUpperBound then
i f self.of().sourceMult.at(2) = null
then issues := issues + {" Source must not have an

upper bound"}
e l se

i f self.of().sourceMult.at(2) > self.source.mult.
upperBound then

issues := issues + {" Source upper bound too small
"} end

end
end;
i f self.of().sourceMult.at(3) <> null then

i f self.source.mult.hasUpperBound
then

i f self.source.mult.lowerBound > self.of().
sourceMult.at(3) then

issues := issues + {" Source upper bound too large
"} end

e l se
issues := issues + {" Source must have an upper bound

"}
end

end
end;
[ditto for target];
issues

end
end

Listing 3: Operation returning multiplicity issues

have been implemented. The modeler may choose from a number
of predefined shapes such as arrows, triangles, diamonds or circles.

The specification of an association type (AL2) requires both, the
definition of the notation for respective associations (AL1), and for
the corresponding links (AL0).

The definition of domain-specific association types can be part of
a DSML provided as an add-on to the XModelerML©. Alternatively,
users of the tool may define their own association types. Only
aggregation and composition were added to the FMMLX as specific
association types. In this case, the implementation was restricted
to add constraints on multiplicities of compositions.

A further issue relates to the persistence of association types and
with it its re-usability in other models. In the XModelerML©, one
package as a whole can be made persistent. If it does not depend
on other packages apart from the core packages such as XCore,
FMMLx or Associations, this is sufficient to recreate a package to
its state when it was saved. If a package depends on other packages,
these have to be loaded first. Also special attention has to be paid
to changes of those packages, further packages rely on. To prevent
issues with referential integrity, a package which another package
makes use of must be explicitly named as such. This serves as a
reminder for the modeler to load it first and also populates the
palettes and the menus accordingly.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ulrich Frank and Daniel Töpel

Association types are part of packages and as such, what was
said about packages above, equally applies to association types as
a part of it. This also allows packages to use association types from
other packages.

With respect to S4 and S5, users need to be able to write XOCL
constraints. Given the peculiarities of specific constraints, this can
hardly be avoided. Also, the constraints have to be added at the
console, since the template for specifying association types does
not include a feature to add constraints.

4.3 Demonstration
Users can define an association type by specifying certain features
within a template (Fig. 5). The template is rather extensive and prob-
ably confusing at first sight, since it accounts for multiple aspects
including those concerning the concrete syntax. However, once a
user has understood the template, the specification is straightfor-
ward.

Figure 5: Template to specify association type

The use of association types within the XModelerML© is demon-
strated in Fig. 7. It includes associations of the two types runsOn
and uses. Due to the semantics of runsOn, an attempt to define
a corresponding association between DBMS_4000 and ERP_X200
causes the violation of a constraint. The classes in the upper part
of the figure are located at L1. The two objects at the bottom serve
the demonstration of the representation of links at L0. Note that
we faded out the representation of a few features from the diagram
in order to save space.

Figure 6: Definition of an association of a certain type

The XModelerML© can be downloaded from www.le4mm.org. A
screencast that illustrates the use of association types can be found
there, too (Menu “XModelerML©-> Examples 2”).

4.4 Preliminary Evaluation
The evaluation of the presented work consists of two parts. First, we
compare the solution against the requirements (see Tab. 1). Second,
we report on experience gained so far with the use of association
types and peculiarities of the implementation.

While the requirements are widely satisfied except for one, two
principal aspects of the evaluation still need to be accounted for.
The first concerns the question whether the effort to implement
(and use) association types pays off. Given the fact that so far most
researchers that work on multi-level modeling seem to have not felt
the need for association types, this is a valid concern. There are two
arguments that invalidate it. First, and most important, providing
for the specification of association types is an obvious consequence
of the idea of DSMLs. A DSML is supposed to provide domain-
specific concepts in order to promote model integrity and modeling
productivity. Second, related to the first, our experience with the
design of multi-level DSMLs in the context of enterprise modeling
clearly showed the benefit of an abstraction over associations.

With respect to the tool, there is one issue that requires fur-
ther consideration. Currently, association types are defined within
a package, that is, within a particular multi-level model. Hence,
their reuse within other models requires importing corresponding
packages. This may be inappropriate in those cases where only as-
sociation types are needed (together with the two classes required
to define them).

Currently, the graphical notation of association types is specified
only once with the association type. A separate specification, as
it is featured by the Concrete Syntax Wizzard that is part of the
XModelerML©, would allow for more flexibility

www.le4mm.org

Association Types: Motivation, Specification and Implementation with the XModelerML© MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Table 1: Requirement Satisfaction

Req. Comments

S1 + The additional level is achieved by having
AssociationType inherit from Class.

S2 + In order to satisfy this requirement, every as-
sociation type inherits from the abstract class
AbstractAssociation upon its creation.

S3 + The specification of multiplicities within association
types is done by tuples that define the range of possi-
ble minimum and maximum values. If the difference
between these values is larger than zero, the corre-
sponding multiplicity is underspecified and needs to
be refined with the creation of associations of this
type.

S4 + Since AssociationType inherits from Class, it is
possible to assign constraints to association types.
The specification of such a constraint can refer to
states of concretizations of the classes connected
through an association of the respective association
type.

S5 + Similar to the previous one: a constraint assigned
to an association type can refer to the states of the
connected classes.

S6 ◦ It is possible to specify that certain kinds of depen-
dencies may be defined only between associations
of certain types. Currently, users are not provided
with a dialog to fill in the specification. Instead, the
specification can be done only via the console.

S7 ◦ The metamodel allows for adding further levels of
association types, e.g., by having newly created types
inherit from AssociationType. However, currently,
there is no need for such an extension. Also, we lack
a clear conception of a type of association types.

T1 + Users are provided with templates to specify and use
associations types, see Fig. 5 and Fig. 6.

T2 + An association type can not only restrict its ends
to concretizations of a given class, it can also be
restricted to that very class.

T3 + In some cases, inconsistent states are prevented. In
the remaining cases, inconsistent states would vio-
late constraints and are highlighted as such.

T4 − Extending the palette not yet implemented. Associa-
tions types available in dialog for adding associations
(see Fig. 6).

T5 + An association type can be edited in the console.
In case, changing an association type violates con-
straints, inconsistent associations or links will be
highlighted.

T6 ◦ Association types can only be deleted if no longer in
use. The respective association have to be deleted or
migrated first.

+ fully implemented
◦ partially implemented
− not yet implemented

runsOn

0..*

0..1

0

0 runsOn

0..*

0..1

0

0

uses

0..*

0..1

0

0 runsOn

0..*

0..1

0

0uses
0..*

0..1

0

0

runsOn

0..*

0..1

0

0

uses

licenses

usedSince

missionCritical

8

2018

yes

CRM_Global

DBMS_4000

Core_i9

Middleware_S40

rome:Core_i9

paris:DBMS_400

licenses

usedSince

missionCritical

24

2012

yes

ERP_X200

Figure 7: Use of specific graphical notations for association
types and corresponding links (below) in the XModelerML©

5 RELATEDWORK
To the best of our knowledge, there is only one other approach
that addresses association types. In their foundational work on
“connections”, intended as a abstraction over associations and links,
Atkinson et al. [1] speak of “connection types” that are instantiated
into associations. However, from the perspective of the FMMLX, the
corresponding specification seems to address mainly peculiarities of
intrinsic associations. Other approaches address certain aspects of
abstraction over associations. They concern deferred instantiation,
underspecification, redefinition, and dependencies of associations.

Similar to [1], various approaches to multi-level modeling sup-
port the specification of associations at higher levels, the “instanti-
ation” of which is deferred to lower levels. This corresponds to the
abstraction that is referred to as intrinsic association in the FMMLX,
see Section 3.

Deferred “instantiation” of associations is enabled by various
approaches, which, however, differ in some details. Within LML [2],
an association has a potency which indicates how many levels are
between the association and the links it is to be “instantiated” to. At
the levels in between, unless directly adjacent with a potency of 1,

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Ulrich Frank and Daniel Töpel

associations have to be created to actually forward the association
down to the link level. These relationships are neither associations
nor links, but rather stand between them, analogously to their
notion of clabjects between classes and objects. Obviously, such
an approach implies both ends of the association to have the same
potency. Therefore, associations must not cross levels, which is
different from the FMMLX. “Dual Deep Modeling” ([13] (DDM)
allows associations to cross levels. Associations have a dual potency
(𝑚 − 𝑛). Each of these potencies serves to define how often the two
involved classes may be concretized. Since links do not allow for
further “instantiation”, their dual potency is 0 − 0. As in FMMLX,
“Flexible Multi-Level Modeling” (FMLM) [11] does not provide for
an additional layer of abstraction between associations and links.
It allows the potency of an association to be flexible, so that links
“instantiated” from it may appear on different levels. However, links
on higher levels are not an abstraction of links on lower levels.

Underspecification of association types is not addressed by any
approach we would know of. Redefinition of associations, however,
provides a mechanism that is in some respect similar. By redefining
an association that was defined at a higher level, it is indirectly
allowed to relax the higher level specification. Research on the UML
produced various approaches that allow for redefiningmultiplicities
of associations. For instance, Costal et al.[3, figure 3.2] present an
example where the multiplicities are redefined in subclasses of the
class connected by an association. In multi-level modeling, DDM
allows for redefinition or overriding of associations at lower levels
by restricting the applicable classes. In this case, the potency must
be lower by at least 1 respectively. Similar to the FMMLX, this is
not possible with FMLM.

Dependencies between associations, not between association
types, are sometimes addressed by specialization relationships, pre-
sumably inspired by the respective concept offered by the UML. In
the UML a specialization of an association a’ from an association
a implies that the set of linked objects “instantiated” from a’ is a
subset of the set of linked objects “instantiated” from a. For example,
an association like takesExamsAt between the classes Student and
University would, in this sense, be regarded as a specialization of
the association isEnrolledAt between the same classes. The LML
features this kind of association specialization, too (see example in
[10]). It also provides a graphical notation to represent it. Different
from LML, FMMLX allows dependencies to be defined between
associations at different levels (see example in Fig. 3). Also, we
intentionally decided against using the term specialization, because
it does not seem appropriate to regard, e.g., taking an exam as a
specialization of enrollment – nor as a generalization the other way
around.

6 CONCLUSIONS AND FUTUREWORK
The fact that association types have been neglected for long may
indicate that there is no urgent need for this kind of additional
abstraction. This is partly in line with our experience. For long,
associations have not been a top priority of our work. However,
during the last years we experienced various scenarios, especially re-
garding the development of DSMLs, where association types proved
to be very beneficial. Also, the introduction of association types
ultimately reflects the core idea of multi-level modeling, which is to

promote reuse, integrity, and flexibility through additional abstrac-
tion. The current implementation provides a testbed for further
investigating the utility of association types and for refining respec-
tive requirements. A further aspect of our future work concerns
the graphical notation of association types. It is currently restricted
to the specification of a few decoration styles only and cannot vary
with the use context. We plan to extend the Concrete Syntax Wiz-
zard to provide for a more versatile specification. Also, the current
implementation lacks a presentation of association types within the
diagram editor. This is a preliminary solution only. We will provide
for adding new association types to the palette upon their creation.

REFERENCES
[1] Colin Atkinson, Ralph Gerbig, and Thomas Kühne. 2015. A Unifying Approach

to Connections for Multi-Level Modeling. In 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS). 216–
225. https://doi.org/10.1109/MODELS.2015.7338252

[2] Colin Atkinson, Bastian Kennel, and Björn Goß. 2011. The Level-Agnostic Mod-
eling Language. In Software Language Engineering, Brian Malloy, Steffen Staab,
and Mark van den Brand (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
266–275.

[3] Dolors Costal and Cristina Gómez. 2006. On the Use of Association Redefinition
in UML Class Diagrams. In Conceptual Modeling - ER 2006, David W. Embley,
Antoni Olivé, and Sudha Ram (Eds.). Springer, Berlin, Heidelberg, 513–527. https:
//doi.org/10.1007/11901181_38

[4] Ulrich Frank. 2014. Multilevel Modeling: Toward a New Paradigm of Conceptual
Modeling and Information Systems Design. Business & Information Systems
Engineering 6, 6 (2014), 319–337. https://doi.org/10.1007/s12599-014-0350-4

[5] Ulrich Frank. 2018. Flexible Multi-Level Modelling and Execution Language
(FMML𝑥): Version 2.0: Analysis of Requirements and Technical Terminology. Tech-
nical Report 66. ICB-Research Report.

[6] Ulrich Frank. 2021. Prolegomena of a Multi-Level Modeling Method Illustrated
with the FMMLx. In Proceedings of the 24th ACM/IEEE International Conference
on Modell Driven Engineering Languages and Systems: Companion Proceedings.
IEEE.

[7] Ulrich Frank and Tony Clark. 2022. Multi-Level Design of Process-Oriented
Enterprise Information Systems: 10:1-50 Pages / Enterprise Modelling and In-
formation Systems Architectures (EMISAJ), Vol. 17. (2022). https://doi.org/10.
18417/EMISA.17.10

[8] Ulrich Frank, Tony Clark, Jens Gulden, and Daniel Töpel. 2024. An Extended
Concept of Delegation and its Implementation within a Modelling and Program-
ming Language Architecture: Enterprise Modelling and Information Systems
Architectures (EMISAJ), Vol. 19. (2024). https://doi.org/10.18417/EMISA.19.2

[9] Thomas Kühne, João Paulo A. Almeida, Colin Atkinson, Manfred A. Jeusfeld,
and Gergely Mezei. 2023. Field Types for Deep Characterization in Multi-Level
Modeling. In 2023 ACM/IEEE International Conference onModel Driven Engineering
Languages and Systems companion. IEEE, Piscataway, NJ, 639–648. https://doi.
org/10.1109/MODELS-C59198.2023.00105

[10] Arne Lange, Ulrich Frank, C. Atkinson, and Daniel Töpel. 2023. Comparing
LML and FMMLX . In Proceedings of the International Conference on Model Driven
Engineering Languages and Systems, ACM/IEEE (Ed.). IEEE Conference Publishing
Services, Los Alamitos, CA, Washington, Tokyo.

[11] Fernando Macías, Adrian Rutle, Volker Stolz, Roberto Rodriguez-Echeverria, and
Uwe Wolter. 2018. An Approach to Flexible Multilevel Modelling. Enterprise
Modelling and Information Systems Architectures (EMISAJ) 13 (July 2018), 10:1–
35–10:1–35. https://doi.org/10.18417/emisa.13.10

[12] Bernd Neumayr and Michael Schrefl. 2009. Multi-Level Conceptual Modeling
and OWL. In Advances in Conceptual Modeling - Challenging Perspectives, Car-
los Alberto Heuser and Günther Pernul (Eds.). Springer-Verlag Berlin Heidelberg,
Berlin, Heidelberg, 189–199.

[13] Bernd Neumayr, Christoph G. Schuetz, Manfred A. Jeusfeld, and Michael Schrefl.
2018. Dual Deep Modeling: Multi-Level Modeling with Dual Potencies and Its
Formalization in F-Logic. Software and Systems Modeling 17, 1 (2018), 233–268.
https://doi.org/10.1007/s10270-016-0519-z

[14] Daniel Töpel. 2021. Associations in Multi-Level-Modelling: Motivation, Concep-
tualization, Modelling Guidelines, and Implications for Model Management. In
2021 ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C). IEEE, 502–510. https://doi.org/10.1109/
MODELS-C53483.2021.00079

https://doi.org/10.1109/MODELS.2015.7338252
https://doi.org/10.1007/11901181_38
https://doi.org/10.1007/11901181_38
https://doi.org/10.1007/s12599-014-0350-4
https://doi.org/10.18417/EMISA.17.10
https://doi.org/10.18417/EMISA.17.10
https://doi.org/10.18417/EMISA.19.2
https://doi.org/10.1109/MODELS-C59198.2023.00105
https://doi.org/10.1109/MODELS-C59198.2023.00105
https://doi.org/10.18417/emisa.13.10
https://doi.org/10.1007/s10270-016-0519-z
https://doi.org/10.1109/MODELS-C53483.2021.00079
https://doi.org/10.1109/MODELS-C53483.2021.00079

	Abstract
	1 Introduction
	2 Motivation
	3 Requirements
	4 Design and Implementation
	4.1 Metamodel
	4.2 Implementation
	4.3 Demonstration
	4.4 Preliminary Evaluation

	5 Related Work
	6 Conclusions and Future Work
	References

