2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C)

Modeling Facets of a Warehouse with the FMML*:
A Contribution to the MULTI Warehouse Challenge

Ulrich Frank*, Pierre Maier*, Daniel Topel*,

*

Abstract—This paper presents a contribution to this year‘s
MULTI challenge concerned with the modeling of physical prod-
ucts in a warehouse. Based on an analysis of the requirements
presented with the challenge, we develop a corresponding multi-
level model with the FMMLX. The model is implemented with the
XModeler™". Therefore, it is executable. We evaluate the solution
against the requirements and discuss it with respect to principle
design decisions, its adaptability, and the inspiration we received
from this work for future enhancements of the FMMLX.

Index Terms—multi-level modeling, warehouse challenge,
FMMLZX, XModeler™", modeling guidelines

I. INTRODUCTION

Research on multi-level modeling (MLM) has produced
a variety of multi-level modeling languages and respective
modeling tools (e.g., [1], [4], [8], [10], [17], [20], [23], [25]).
Apart from common foundational concepts, these approaches
differ both in terms of particular language terms and with
respect to corresponding modeling tools. In recent years, there
has been a clear interest in consolidating research. This is
expressed above all in promoting the comparability of the
different approaches and, thus, defining a common core.

The MULTI challenges series reflects this objective. A
challenge relates to a use case, which is described in terms of
requirements that need to be satisfied by the respective MLM
approach. This year’s challenge concerns the management of
physical products in a warehouse [21].

Products represent an especially suited subject for MLM
because they exist in a considerable variety, which demands
for powerful abstraction concepts. It is therefore not surprising
that the representation of products often serves as a prime
example to motivate the need for MLM (e.g., [2], [3], [8],
(101, [19D.

Before we present and discuss our solution, we introduce
parts of a multi-level modeling method we applied to develop
the model. It consists of the FMMLX (section II) and guide-
lines that support design decisions (section III). In addition,
we provide a short overview of the corresponding modeling
tool, the XModelerM™ (section II), and an analysis of the
case described with the challenge (section IV). The main
part of the paper is dedicated to the design of the solution
(section V). Subsequently, the solution is evaluated against
the requirements (section VI). At last, we discuss additional
aspects of the presented model’s quality and of the FMMLX
(section VII).

979-8-3503-2498-3/23/$31.00 ©2023 IEEE
DOI 10.1109/MODELS-C59198.2023.00107

659

University of Duisburg-Essen, Essen, Germany

II. BACKGROUND: FMMLX AND XMODELERME

The flexible multi-level modeling and execution language
(FMMLX)! is an object-oriented language and provides the
following basic modeling constructs. Classes are intensionally
defined by their properties, that is, attributes, operations,
associations and constraints. Attributes are defined by a class
or an enumeration type and a name. Each class is an object
at the same time. Hence, it has state, may execute operations,
and is an instance of a class. As a consequence, the FMMLX
allows for an arbitrary number of levels. We do not use the
common term “clabject” (e.g., [3]) to express this duality, since
the metamodel of the FMMLX makes an explicit distinction of
the concepts Class and Object (see below). To avoid confusion,
we speak of “class” whenever we refer to the class facet of
an object, otherwise of “object.”

Each object in an FMMLX model is assigned an explicit
level. A level indicates the classification level, but must not
be confused with pure classification (at least in case of the
classification of classes). A class is created from its class
through an act we call concretization, following a proposal
in [24]. Concretization is different from instantiation because
a concretized class does not only instantiate properties defined
with its class but also inherits from the root class of the core
metamodel (see below). Each instance or concretization of a
class A is called its descendant; class A inversely the ancestor.
We call the set of all descendants of a class the concretization
tree of that class.

As a default, the level of a class reflects the number of
classifications starting at LO (we use “L” as an abbreviation
for “level” in the following). Properties can be defined as
intrinsic, which means they are supposed to be instantiated
not within direct descendants of a class, but only further
down the concretization tree (“deferred instantiation”). To
that end, the specification of intrinsic properties includes the
definition of the level where they should be instantiated. This
instantiation level of an intrinsic property must be lower
than the level of its class minus one. To facilitate consistent
changes, intrinsic properties are specified in a FMMLX model
only once. Within lower level classes only include references
to these specifications.

Associations may be defined between two classes at dif-
ferent levels. However, generalization/specialization relation-
ships can be defined only between classes at the same level.

'Note that the acronym was resolved to “flexible meta-modeling and
execution language” in early publications.

Operations and constraints are defined with the executable
object constraint language (XOCL)?([5], [6]). In other words:
FMMLX models are represented with the XOCL, a complete
programming language, which makes them executable. The
FMMLX comprises a default notation that follows the UML
style and, among others, uses colors to distinguish levels.
To customize the design of multi-level DSMLs, the default
notation can be replaced by a domain-specific variant.

The FMMLX is specified as a monotonic extension of
“XCore,” the meta-model of the executable meta-modeling
facility (XMF) [6]. Since it implements a “golden braid
metamodel architecture” [5, pp. 23f.], XCore enables an
arbitrary number of classification levels. The core idea is that
each class (except for classes at L1) inherits from Class.
Hence, these essential properties are available with every class,
which corresponds to the linguistic metamodel other MLM
approaches are based on.

At the same time Class inherits from the class Object
(which itself is an instance of Class) with the effect that
every class has object properties, that is, it has a state and
can execute operations. Different from the FMMLX, XCore
does not provide for the definition of levels or for deferred
instantiation.

The XModeletML extends the XModeler, the implemen-
tation of XMF [5]. It implements the FMMLX and allows
the execution of FMMLX models. Upon the specification of
attributes and associations, the XModeler™" generates corre-
sponding access methods, which can be faded in and out on
demand. This is the case, too, for properties that are derived
from higher level classes.

The XModeler™" allows to create and interact with FMMLX
models by using a diagram editor, a multi-level object browser,
an object workspace, and a generated default GUI for selected
objects. A concrete syntax editor enables the creation and
integration of graphical notations.

The diagrams shown in Fig. 1 and Fig. 3 illustrate core
concepts of the FMMLX as well as its default notation. More
detailed descriptions of the FMMLX, XCore, and XMF are
available in [10] and [5]-[7], [11], [12].

III. MULTI-LEVEL MODELING GUIDELINES

Modeling methods suggested for the use of traditional
languages with one classification level only, or for the design
of traditional DSMLs (e.g., [9], [18]) provide useful general
modeling principles such as “separate invariant from variable
parts of a system,” or “avoid redundancy.” but are not sufficient
to guide the appropriate use of additional concepts provided
by multi-level languages. We follow the multi-level modeling
guidelines proposed in [13] as an orientation for a method-
ical development of the presented solution. Table I gives an
overview of selected design principles that are part of these
guidelines.

2The XOCL is sometimes also referred to as “executable object command
language”.

660

The design principles do not work as a cookbook. Instead,
each principle recommends a thorough analysis of the respec-
tive domain.

TABLE 1
MULTI-LEVEL MODELING GUIDELINES FROM [13] (EXCERPT)

id Design Principle Description

G-1 | Specify known knowledge on the highest possible level within
the scope of your project.

G-2 | The higher the level of an object, the more invariant it should
be.

G-3 | The design of an object at any level should aim at modifica-
tion consistency.

G-4 | Assign properties of objects on levels higher than L1 to
categories that indicate semantic differences.

G-5 | Every class should be assigned the level where it conceptually
belongs.

G-6 | Avoid the introduction of “fake” levels, that is, of levels that
could be expressed through generalization/specialization.

G-7 | Commonalities should be captured by an appropriate abstrac-
tion also in cases of incomplete knowledge

IV. WAREHOUSE CASE ANALYSIS

We analyzed the challenge description to extract require-
ments and assigned a unique identifier to each one to fa-
cilitate their referencing. The analysis showed that some of
the requirements are not sufficiently precise or complete.
Cases where our interpretation of a requirement may deviate
from the authors’ intention are marked with an i. Additional
requirements that follow from the challenge but are not made
explicit there are marked with an « in table II. To structure the
analysis, we start with focusing on different product categories.
Subsequently, we will take a closer look at product details.

(1) Categorization of Products. The challenge distinguishes
between two principal kinds of products. On the one hand,
there are product exemplars (copies) that have an identity
of their own within the realm of the warehouse. We call
this kind of products identity product (R-1). An identifier
may be explicitly assigned, e.g., through a serial no., as it
is exemplified for a DVD player. On the other hand, the
warehouse does not keep track of individual exemplars in case
of Bulk products (R-2).

Bulk products and identity products represent special cases
of a more general notion of product (“adhere to the same
stipulation”) (R-3). Bulk products may be sold in packs. We
conclude this from the example of 10-pack batteries (R-4). We
also conclude from this example that packs of bulk products
(a) qualify as a specific kind of product and (b) do not have
an identity of their own in the realm of the warehouse (R-
5). Product copies and product specification types conform to
their respective types (R-6, R-7).

(2) Product Pricing. All products must be assigned a
standard sales price (SSP) (R-8). Identity products may have
assigned a reduced price that must be lower than the standard
price (R-9). All products of any kind may be assigned a
minimum price. This property should apply to identity and
bulk products alike. However, we assume that it relates to

the minimum standard price for bulk products (R-10) and the
minimum reduced price for identity products (R-11).

The currency used to specify any of the above prices is
defined at the level of a product specification type. Note that
this also covers the statement “Copies conforming to the same
product specification are always sold in the same currency”
(R-12). Price assignments should not use a currency different
from the one defined for their respective product specification
type (“type safe”) (R-13).

According to the challenge, each product specification type
defines a tax rate (R-14). The tax rate is the same for all
product specification types (15%), except for books (7%) (R-
14). We assume that these reference tax rates are subject to
change. The gross price (“final price”) of each product is the
standard or reduced price plus tax (R-16).

(3) Product Recommendations. Products may point to other
products to express recommendations. We assume that recom-
mendations of this kind are restricted to product specifications
(R-24). A product specification may only recommend other
product specifications if they have explicit clearance for this,
e.g., if they are compatible (R-25). Since a product should not
directly recommend itself, we add requirement (R-26).

(4) Warehouse Management. According to the challenge,
the warehouse “needs to keep track of the sum of all products
sold“. We regard this requirement as problematic for two
reasons. First, to keep track of sold amounts of bulk products,
one would need to introduce further concepts such as invoice,
invoice item, etc. We assume that these would be beyond the
scope of the warehouse. Second, while it would be possible
to mark objects representing specific exemplars of identity
products as sold, that would would create serious drawbacks.
To support a purposeful analysis of sold products, one would
have to add the date when a product was sold. Over time,
prices are likely to change. Therefore, one would also have
to store the corresponding price history. For these reasons we
took the liberty to interpret the requirement as follows: “The
warehouse needs to keep track of the value represented by the
products it stores, both at the product specification level (R-
17) and the product specification type level” (R-18). In case
of an identity product, the value of a particular exemplar is
determined by its final price. In case of a bulk product, the
value is given by the standard price times the amount in stock.

This requirement implies that for all bulk products the
amount in stock needs to be recorded. Since we assume
that not all bulk products are sold necessarily in packs, this
demands for recording both, the amount of unpacked bulk
products and the amount of bulk product packs (R-19).

The warehouse management system should be able to
“dynamically” add and remove product specification types
(R-21). The challenge states that “Product copies may have
properties such as “open box’, accessories missing’, ‘returned
on 23 March 2023”. We interpret this requirement as “It must
be possible to add properties for a more elaborate description
of product copies.” (R-22). This is a special, less demanding,
case of the previous requirement. It should be possible to keep
track of the date a new product specification type was added

661

(R-23).

(5) Focus on Particular Product Specifications. Among
others, the warehouse includes DVDs and books. According
to the challenge, a book copy is an instance of a book
specification that contains bibliographic data such as title
(and presumably the name(s) of the author(s) in order to
distinguish between two books that share the same title).
Furthermore a book specification should define a reference
currency and standard sales price. Similarly, a DVD containing
a movie is regarded as an instance of a DVD type that
includes the title of the represented movie. Note that taking
these requirements literally may lead to redundancy, e.g., a
paperback and a hardcover representing the same monograph
would both include a string to express the same title.

Note that we did not explicitly mention all examples in
the challenge, since they are not essential for addressing the
requirements. We hope that the solution is sufficiently clear
about how they are represented.

V. MODEL PRESENTATION

The following presentation is divided into four subsections.
First, we introduce generic domain classes that capture domain
knowledge at the highest level of abstraction (subsection V-A).
In the light of guideline G-1, we aim at addressing as many
requirements as possible in this subsection already. Thereafter,
we focus on the specific categories identity products (subsec-
tion V-B) and bulk products (subsection V-C). Finally, we
present a general warehouse management class that allows
for multiple kinds of warehouse analysis (subsection V-D).
Note that the description does not explicitly account for every
requirement. In cases where the satisfaction of a requirement
is obvious, we confine ourselves with its description in Table
III. With respect to space limitations, we cannot present the
specification of all constraints and operations.

In addition to this presentation, the complete and executable
model as well as a screencast that demonstrates its use are
available at https://le4mm.org/multi-23/. The XModeler™" can
be downloaded from the webpages of our project LE4AMM
[14].

A. Generic Domain Knowledge

The generic domain knowledge is represented by five
classes on L3 (see Fig. 1). Product specifies the properties
common to all kinds of products (R-3). The classes
IdentityProduct and NonIdentifiableProduct
are specialized from Product and represent generic
knowledge that distinguishes non identifiable products
(bulk products) from identity products. The class
NonIdentifiableProduct serves as abstract superclass
of the classes BulkProduct and BulkPackage, which
both have in common that they are not identifiable (this
is what we conclude from the challenge and the common
handling of products like battery packs). We will take a closer
look at this conceptualization below.

While it might, at first sight, appear to regard
IdentityProduct and NonIdentifiableProduct

TABLE II
LIST OF REQUIREMENTS

id Description

R-1 There are products, exemplars (copies) of which have
an identity of their own within the realm of the
warehouse.

R-2 There are also bulk products, for which the ware-
house does not keep track of individual exemplars.

R-3 Bulk products and identity products represent special
cases of a more general notion of product (“adhere
to the same stipulation”).

R-4 Bulk products may be sold in packs. i

R-5 Packs are bulk products, too. i

R-6 Product copies conform to a product specification).

R-7 Product specifications conform to a product specifi-
cation type.

R-8 All products must be assigned a SSP.

R-9 Identity products may have assigned a reduced price
which must be lower than the standard price.

R-10 | Bulk products may be assigned a minimum price that | i
restricts their SSP.

R-11 | In the case of identity products, the minimum prices | i
limits the reduced price.

R-12 | A reference currency is defined with each product
specification type.

R-13 | Currencies used for price assignment should be type
safe.

R-14 | Each product specification type is assigned a tax rate.

R-15 | There are only two different tax rates: either a | i
standard tax rate (15%) or a reduced tax rate (7%,
e.g., for books).

R-16 | The final price of each product is its regular sales
price plus tax.

R-17 | It should be possible to calculate the total value of | i
all products that conform to a product specification.

R-18 | This should be possible, too, for all products that | i
conform to a product specification type.

R-19 | The amount in stock needs to be recorded for bulk | i
products.

R-20 | The warehouse needs to be able to iterate over all
copies and bulk products it currently has in stock
for inventory purposes.

R-21 | The model should allow for adding new product
specification types.

R-22 | It must be possible to add properties for a more | i
elaborate description of product copies.

R-23 | The date a new product specification type was added
needs to be stored.

R-24 | Product specifications can recommend other product
specifications.

R-25 | Recommendation between product specifications are
only allowed if this was explicitly defined as possi-
ble.

R-26 | Product specifications must not recommend them- | a
selves directly.

as concretizations of Product, a closer look shows that
there is no property defined by Product that is instantiated
within one of the two other classes. Therefore, regarding them
as concretizations of Product would violate guidelines G-5
and G-6.

An L2 descendant of Product, or one of its subclasses,
corresponds to a product specification type, an L1 descendant
to a product specification, and an LO descendant to a particular
product copy. As a result, each product copy is an instance of
a product specification (R-6) and each product specification
is a concretization of a product specification type (R-7) This

662

allows us to add and remove product specification types as
concretizations of BulkProduct or BulkPackage (R-21).
Note that these modifications are, however, restricted to the
available classes on L3. We discuss this aspect in more detail
in the discussion section (see section VII).

The properties defined with Product allow for expressing
various kinds of prices that apply to product specifications (R-
8, R-10), as well as to the definition of a reference currency
R-12 (see below) and the date a product specification was
introduced (R-23).

For modeling currencies, the FMMLX provides the auxiliary
classes MonetaryValue and Currency. An object of the
class MonetaryValue contains an object of Currency
that represents a currency together with an amount that is
specified as Float. A particular currency is presented within
a diagram as a string, which is an element of an extensible
set of currency strings that follow ISO 4217. The class
MonetaryValue also provides for converting amounts from
one currency to another, which, e.g., allows for adding two
amounts together that are represented in different currencies.

The attribute currency of type Currency addresses re-
quirement R-12. This allows each L2 descendant of Product,
hence, each product specification type, to specify a different
currency. A currency string serves as a reference to a web
service that provides current exchange rates. The attribute
standardPrice in Product is instantiated on L1 and thus
enables each product specification to define a different SSP (R-
8). The intrinsic constraint CurrencyMatchl in Product
ensures that the currency of each standardPrice on L1
corresponds to the currency specified in the respective product
specification type on L2 (R-13):

Context Product L1
@Constraint currencyMatchl

self.standardPrice.currency.abbreviation = self.of ().
currency.abbreviation

fail
self.name + "’s price must be in " + se .of () .currency
.abbreviation

end

Note that the class defined as the context of an intrinsic
constraint serves as an abstraction of the specific classes or
objects at the level the constraint applies to.

A reduced price can only be defined for product copies
(R-9). This requirement is addressed by the intrinsic at-
tribute reducedPrice with an instantiation level of 0
within the class TdentityProduct. The intrinsic constraint
reducedPriceSmaller defined in the same class ensures
that the reduced price defined on LO is lower than the SSP
assigned on L1 (R-11):

Context IdentityProduct LO

@Constraint reducedPriceSmaller
if .reducedPrice = null
then true
else

I f.reducedPrice.getAmount () < f.0f ()
standardPrice.getAmountIn (self.reducedPrice.currency)
end
fail
"reducedPrice must be less than standardPrice"
end

The amount represented by a MonetaryValue value
is retrieved via the getAmount () function. It returns the
converted amount if the currencies do not match. Since
the definition of a reduced price should be optional (R-9),
the multiplicity of reducedPrice has a lower bound of
0 and the constraint reducedPriceSmaller must first
check whether the value of reducedPrice is null. Ad-
ditionally, we must ensure that if a value is provided for
reducedPrice on LO, it has the same currency as its
product specification type on L2, referred to by applying the
method of () twice (it returns the class of the corresponding
object) (R-13):

Context Product L1
@Constraint currencyMatchO

self.reducedPrice = null orelse sel
currency.abbreviation = self

f.reducedPrice.
.of () .0of () .currency.

abbreviation
fail
self.name + "’s price must be in " + self.of().of().
currency.abbreviation
end
The intrinsic attribute inStock defined with

NonIdentifiableProduct serves the representation
of amounts in stock (R-19) stored with bulk product types
at L1. In addition, it includes the intrinsic operations
priceAfterTax () and valueInStock () that address
requirements R-17 and R-16. IdentityProduct defines
the intrinsic attribute id (R-1).

While the classes IdentityProduct and
BulkProduct seem like obvious choices, the
conceptualization of packs is more demanding. We decided
to represent them by the class BulkPackage, which we
defined, like BulkProduct, as subclass of the abstract class
NonIdentifiableProduct. Packs are products and we
assumed that the warehouse does not keep track of single
packs, which makes them non identifiable in this context.
A pack is characterized by the number of pieces it contains
(attribute piecesPerPack). This conceptualization follows
the conjecture that bulk packages and the bulk items they
contain are different products, and, as such, might define
different values for attributes like introduced, taxType,
or standardPrice.

This conceptualization represents a simplified version of the
composite pattern, since we assume that packs can contain
bulk products only, not other packs. Note that, at this level we
cannot yet tell much about possible kinds of containment and
their properties such as cardinalities.

For tax rates, we distinguish between a 7% reduced tax
rate and a 15% standard tax rate. Following G-7, we assume
that further tax categories might be added in the future, so
a Boolean type cannot be used for this purpose. Instead,
we define an enumeration Tax, with the values NORMAL
and REDUCED, and add the attribute taxType: Tax in
Product to assign a tax type to a product specification type
on L2. These values are used in the operation taxRate (),
specified in Product. It returns the tax rate according to the
specified category and thus fulfills R-15 and R-14.

663

recommends P

| >

Level

AFMMLXx::MetaClass*

Product

0.

Association name

currency: Currency[1]
Attributes introduced: Date[1] Class name
taxType: Tax(1]
[minPrice: MonetaryValue[1]
: (1]
- 0.+ BtaxRate(): Float 0.
Association . valuelnStockType(): MonetaryValue | . Operations
Multiplicity T enoyMatont
Instantiation Level noCyclicRecs Constraints
properRecommendation
currencyMatcho Specialization

Abstract Class

AFMMLx::MetaClass”
NonldentifiableProduct

inStock: Integer[1]

currency: Currency[1] (from Product)

introduced: Date[1] (from Product)
taxType: Tax[1] (from Product)

minPrice: MonetaryValue[1] (from Product)
standardPrice: MonetaryValue[1] (from Product)

AFMMLx::MetaClass”
IdentityProduct

id: String[1]
reducedPrice: MonetaryValue[0..1]
currency: Currency[1] (from Product)
introduced: Date{1] (from Product)
taxType: Tax{1] (from Product)

minPrice: MonetaryValue(1] (from Product)

etaryValue[1] (from Product)

priceAfterTax(): MonetaryValue
valuelnStock(): MonetaryValue

4 taxRate(): Float (from Product)

4 valuelnStockType(): MonetaryValue (from Product)

valuelnStock(): MonetaryValue

netPrice(): MonetaryValue

priceAfterTax(): MonetaryValue

< taxRate(): Float (from Product)

4 valuelnStockType(): MonetaryValue (from Product)

nolnstances

minimumPrice

reducedPriceSmaller

f

AFMMLx::MetaClass*

BulkProduct

AFWilL«::MetaClass”
BulkPackage

currency: Currency[1] (from Product) piecesPerPack: Integer{1]

introduced: Date{1] (from Product) currency: Currency[1] (from Product)

taxType: Tax{1] (from Product) introduced: Date[1] (from Product)

inStock: Integer[1] (from NonldentifiableProduct) taxType: Tax[1] (from Product)

minPrice: MonetaryValue[1] (from Product) inStock: Integer[1] (from NonldentifiableProduct)

standardPrice: MonetaryValue[1] (from Product) minPrice: MonetaryValue[1] (from Product)

4 taxRate(): Float (from Product) standardPrice: MonetaryValue[1] (from Product)

4 valuelnStockType(): MonetaryValue (from Product) < taxRate(): Float (from Product)

4 priceAfterTax(): M (from c 4 Type() ue (from Product)

¢ Stock(): M ue (from oduct) 4 priceAfterTax(): MonetaryValue (from NonldentifiableProduct)

:) M (from Nonidentif

Fig. 1. Product class with specializations on L3

Since the operation is defined only once in Product,
the tax rates can be updated and further tax categories can
be added with minimal effort. This avoids any redundant
specification of tax rates.

While the gross price of bulk products is computed di-
rectly by the operation priceAfterTax () specified within
NonIdentifiableProduct, calculating the final price of
an identity product requires to account for the reduced price,
if applicable:

Context IdentityProduct LO
@Operation netPrice () :Auxiliary::MonetaryValue

if sc .reducedPrice = null
then f.of () .standardPrice
else sclf.reducedPrice
end

end

Based on this, the final price is calculated by the operation
priceAfterTax ().

The accumulated value of products that belong to one
product specification (R-18) must also be calculated differ-
ently for bulk and identity products. For L1 descendants of
IdentityProduct, the accumulated value is calculated
by the intrinsic operation valueInStock () based on the
priceAfterTax () value returned by the LO product copies
of a product specification (see below).

Context IdentityProduct L1

@Operation valueInStock () :Auxiliary::MonetaryValue
let
sum
in

Auxiliary::MonetaryValue (0.0, se
.allInstances () —collect (i |
sum := sum.add(i.priceAfterTax()));
sum
end
end

.of () .currency)

For L1 descendants of NonIdentifiableProduct, the
sum is calculated based on the standardPrice value at L1
by the intrinsic operation valueInStock ().

Computing the accumulated value of product specification
types (cf. R-18), however, does not require to distinguish
between identity and bulk products, since it makes poly-
morphic use of the two implemenations of the operation
valueInStock (). Therefore, the corresponding operation
can be defined in Product:

Context Product L2

@Operation valueInStockType () :Auxiliary::MonetaryValue
let sum = Auxiliary::MonetaryValue(0.0,self.currency)
in self.allInstances()

—collect (i | sum := sum.add(i.valueInStock()));
sum
end
end

Further operations to calculate stock values are presented in
section V-D.

The intrinsic association recommends, which is to link
descendants of Product at L1, serves to fulfill requirement
R-24. The association alone, however, is not satisfactory,
since only products of a certain kind may be involved in
recommendations (cf. R-25). To address this requirement, we
define the association mayRecommends that enables to link a
product specification type with those product specification type
the descendants of which its descendants may recommmend.
The constraint properRecommendation checks whether
a recommends link on L1 is proper in the sense that the
corresponding ancestor product specification types on L2 are
connected via a mayRecommends link:

Context Product L1

@Constraint properRecommendation
self.getRecProducts ()
—forAll (pl | self.of().getRecommendableProducts ()

—exists(p2 | pl.isKindOf (p2)))
fail
"Some recommended products must not be recommended"
end

The constraint noCyclicRecs in Product serves pre-
venting products from directly recommending themselves. (R-
26):

Context Product L1
@Constraint noCyclicRecs

not self.getRecProducts () —includes (self)
fail

"A product must not recommend itself."
end

Bulk products face additional modeling requirements that
can be addressed on L3, too. Requirement R-2 prohibits
the existence of bulk product exemplars in the ware-
house. Accordingly, the constraint noInstances within
NonIdentifiableProduct is to make sure that no bulk
products must exist at LO.

664

Context WarehouseManager
@Operation bulkValueInStock () :Auxiliary::MonetaryValue
let sum = Auxiliary::MonetaryValue (0.0,Auxiliary::eur)
in @For p in Challenge23::BulkProduct.allMetaInstances ()
—select (o | o.level 1) do
sum sum.add (p.priceAfterTax () .mul (p.getInStock()))
end;
sum
end
end

The identityValueInStock () operation follows

the same principle. But here the descendants of
IdentityProduct on LO are gathered and the
value returned by the operation priceAfterTax ()

is accumulated. Both these operations are used in the
totalValueInStock () operation.

B. Identity Product Descendants

Most requirements concerning identity products are already
met by our specification of classes on L3 (see subsection V-A).
The class TdentityProduct can be used to concretize
product specification types on L2 which, in turn, can be used
to concretize product specifications on L1. These can then be
used to instantiate product copies on LO.

As we indicated already with the analysis of the require-
ments, the conceptualization of books and DVDs suggested
by the challenge may lead to redundancy. Also, from an
ontological perspective, there is an obvious difference between
a book as a physical artefact and the bibliographic artefact it
represents. After consulting with the workshop chairs we were
advised to follow the conceptualization suggested by the chal-
lenge. While this is certainly acceptable in order to simplify
matters, we are not comfortable with designing a model that
would violate principles we regard as relevant. Therefore, we
decided to develop two variants of the model, which are both
available for download at https://le4mm.org/multi-23/.

The default variant is a reflection of what is demanded by
the challenge authors. It provides for capturing both, properties
of the medium (book, DVD) and the represented content in
one product type specification (Book and DVD respectively).
Hence, the object representing a book type at L1 includes
pricemarks and the book title, where a reduced price maybe
defined with its instances. DVDs are represented accordingly.

The extended variant reflects the idea of distinguishing
between an intellectual artefact, such as a monograph or a
movie, and its representation in a book or on a DVD. It avoids
the redundancy issue described in section IV and corresponds
to the default variant as follows. According to the challenge,
Moby Dick is a Book Spec that classifies books that comprise
copies of Moby Dick. This is represented by the default variant
and would translate to “The book type Moby Dick Book
classifies books which represent the monograph Moby Dick.”
in the extended variant.

In the diagrams showing the model (Fig. 3 and Fig. 2),
the parts that were added to the default variant are covered
by semi-transparent areas. Note that the attributes title in
the classes Book and DVD as well as the corresponding slot
values in their concretizations are not required for the extended

variant. Accordingly, the identity product specification type
DVD and its descendants on L1 and LO are described in the
default variant with the attribute t it le, while the extended
variant adds the class Movie.

The remaining identity products are shown in Fig. 2. The
object MobilePhone, which represents a product specifica-
tion type, provides reference values to attributes defined in
Product that have an instantiation level of 2. For example,
MobilePhone defines a currency with the slot currency
(cf. R-12) and an introduced date (cf. R-23). Some slots
are specific to descendants of IdentityProduct, like the
id slot in the LO object mate08151 (cf. R-1).

In the following, we only describe a few exemplary objects
at L1 and LO. The models provided at https://le4mm.org/
multi-23/ include all objects and can be easily populated with
further instances.

Operations that are executed by these objects return the
respective value as defined in the classes Product or
IdentityProduct. The object mate08151 returns a net
price of 599.15 SEK which corresponds to the SSP in its
product specification Mate0815 because mate08151 does
not specify a reduced price.

C. Bulk Products and Bulk Packages

An example bulk product specification type from the case
description is shown in Fig. 3. BatteryCell is a concretiza-
tion of BulkProduct. BatteryPack is a concretization
of BulkPackage. The association containsBatteries,
defined between BatteryCell and BatteryPack, allows
battery cells to be contained in multiple package types — or
none at all. We also added some battery-specific attributes
to BatteryCell like voltage and recharchable.
BattSize is an enumeration that contains the values AA and
AAA.

Since both L1 objects, EnergeticPlus and
EnergeticPlus_Pack10 are descendants of Product,
they must both provide values for the different pricing
attributes. They therefore define an SSP, which is
1.50 NZD for EnergeticPlus and 12.00 NZD for
EnergeticPlus_Pack10. The SSP of EnergeticPlus
corresponds to the price value of a single battery cell.

D. Warehouse Management Class

While objects on L2, which represent product specification
types, can iterate all objects within their respective concretiza-
tion tree, no class could iterate all product objects. Therefore,
the iteration of all product objects (cf. R-20) is realized
through a separate WarehouseManager class (see Fig. 4).
We calculate the total value of products in the warehouse
by first determining the value of bulk products and identity
products separately and then adding both together.

The operation bulkValueInStock () initializes a vari-
able sum of type MonetaryValue at 0.0 EUR. Then, all
L1 descendants of NonIdentifiableProduct are iter-
ated and, for each, the value returned by priceAfterTax ()
is multiplied by the number of pieces in stock. This value is

665

accumulated in the sum variable, where add converts any
MonetaryValue to the initialized currency EUR.

VI. MODEL EVALUATION AGAINST REQUIREMENTS

We consider each requirement shown in table II as satisfied
by our solution. Note that some requirements deviate from the
original case description as discussed in section IV. Table III
summarizes how the requirements were addressed.

VII. DISCUSSION

Although we believe that our solution satisfies the require-
ments of the challenge, a closer look at the solution re-
veals certain limitations. The following discussion of principle
strengths and possible limitations accounts for the aspects
suggested by the challenge except for two: We described and
elucidated the basic modeling constructs in section V and
outlined how class levels are created technically in section
1L

A. Reuse, Adaptability, and Integrity

The rationale for deciding what level a class should be
assigned to (“rationale for assigning elements to levels”) is
reflected in guidelines G-1, G-2, G-3, and G-5. Applying
these guidelines is not trivial, though. It requires substantial
knowledge of the domain to decide which of its characteristic
properties are likely to be invariant over time, and — of course
— there is no way of proving that. If the guideline is applied
properly (which is, again, not trivial to tell), it will enable an
appropriate “balance between prescriptiveness and variability,”
as it is mentioned in the challenge. If classes at higher levels
and their relationships to classes at lower levels are invariant
also in the light of new requirements, a corresponding model
will support convenient adaptations that maintain the model’s
integrity.

In that case, adding and removing properties at higher levels
will lead to consistent updates of affected elements at lower
levels. Due to the fact that the XModelerM™ does not support
static typing, not every modification can be performed without
user interaction. While the design of the solution we present
in this paper is solely aimed at fulfilling the requirements
of the challenge, a comprehensive evaluation of the model
recommends accounting for possible future changes. At first,
this relates to changes that may occur within the specific
focus of the challenge. It may, for example, happen that
bulk products turn into identity products if the costs caused
by distinguishing particular exemplars decrease the additional
benefit keeping track of every exemplar. Within the current
solution, this would require a major change since it would
likely involve class migration or a reconstruction of the entire
multi-level hierarchy.

With respect to selling representations of artifacts such as
movies or monographs, it is likely that other representations
such as streaming as well as corresponding pricing models will
have to be accounted for at some point. Also, certain products
may be bundled with others. For example, batteries may be
part of electric devices. In that case, there will be no price

Fig. 3. Remaining descendants of NonIdentifiableProduct and IdentityProduct

assigned to them. Second, related to requirement R-23, adding

new product types may require additional classes at the level of

NonIdentifiableProduct and IdentityProduct,
e.g., for perishable foods that need to be refrigerated or

copyType: CopyTypel1]
pages: Integer{1]
minPrice: MonetaryValue[1] (from Product) minPrice: MonetaryValue[1] (from Product) title: String[1]
standardPrice: MonetaryValue[1] (from Product) standardPrice: MonetaryValue[1] (from Product) s0ldOn: Date[1]
id: String[1] (from IdentityProduct) id: String[1] (from IdentityProduct) minPrice: MonetaryValue[1] (from Product)
reducedPrice: MonetaryValue[0..1] (from IdentityProduct) ce /alue(0..1] (from) alue{1] (from Product)
— S S o o AFMMLx::MetaClass®
1) ue (from Ide ct) | mayRecommend K) (from) id: String[1] (from IdentityProduct) e 0
4 netPrice(): MonetaryValue (from IdentityProduct) 4 netPrice(): MonetaryValue (from IdentityProduct) reducedPrice: MonetaryValue[0..1] (from IdentityProduct) edition: Integer(1] wrmanBy>
4 priceAfterTax(): MonetaryValue (from IdentityProduct 4 priceAfterTax(): MonetaryValue (from IdentityProduct it i)
tp (Y ty!) *p (): y! (yl) title(): String frstPublished: Date[1] 0
currency = Currency<SEK> currency = Currency<SEK>)) lue (from) title: String[1]
introduced = 04 May 2006 introduced = 05 Jun 2007 4 netPrice(): MonetaryValue (from IdentityProduct)
taxType = NORMAL 'taxType = NORMAL “ priceAfterTax(): MonetaryValue (from IdentityProduct) e —
i AFMMLx:MetaClass™
taxRate()-> m taxRate()-> currency = Currency<EUR> il
> [- introduced = 12 May 2021 -
lvaluelnStockType() valuelnStockType()-> ° REDUCEyD irstName: Stingl1]
taxType = . §
P lastName: String[1] e
ltaxRate()-> [
Type()->
~Book”
1 HardCover
id: String[1] (from IdentityProduct)
AMobilePhone” AMobilePhoneCase® ce: yValue[0..1] (from uct) AMonograph*
1 Mate0815 1 Matey SoldOn: Date{1] (from Book) 0 McEwan_Amsterdam
id: String[1] (from IdentityProduct) id: String[1] (from IdentityProduct) 4 netPrice(): MonetaryValue (from IdentityProduct) lodition = 1 Lo —o
reducedPrice: MonetaryValue[0..1] (from IdentityProduct) > reducedPrice: MonetaryValue[0..1] (from IdentityProduct) 4 priceAfterTax(): MonetaryValue (from IdentityProduct) frstPublished = 01 May 2002)
netPrice() se (from)| recommends ¥ >IU 4 netPrice(): MonetaryValue (from IdentityProduct) copyType = hard litle = Amsterdam |
“ priceAfterTax(): MonetaryValue (from IdentityProduct) 1 priceAfterTax(): ue (from ct) minPrice = 7.99 EUR |
minPrice = 239.66 SEK minPrice = 7.18 SEK pages = 238 AAuthor® |
IstandardPrice = 599.15 SEK standardPrice = 17.95 SEK standardPrice = 9.99 EUR a3_Author Arittens: J
ValuelnStock()> ValuelnStock()-> fitle = SIREIOITEN] firstName = lan
titte()-> 8 lastName = McEwan
lvaluelnStock()-> PXORRREU
0 AM“E: :1'51" 0 AM“?'A AHardCover® AHardCover® . .
pra0ats) jnay 0 hardcover 0 nhardcovert .t od Vit
— extended Varian
id = MZ200 id = mat44882 s = K893
reducedPrice = null reducedPrice = null reducedrrice = [T reducedPrice = 8.99 EUR
netPrice(netPrice () s0ldOn = null s0ldOn = 17 May 2023
riceAfterTax()-> [§ riceAfterTax()->
P ()- Ld 0 netPrice()-> netPrice()->
priceAfterTax()-> priceAfterTax()->
Fig. 2. Descendants of IdentityProduct
capacity: Float(1] hdmi: Boolean(1] capacity: Integer{1]
manufacturer: String(1] Derived Properties mobile: Boolean(1] protected: Boolean{1]
rechargable: Boolean[1] in gray inStock: Int {1] (from BulkProduct) resolution: Integer{1] resolution: Integer[1]
size: BattSize[1] minPrice: MonetaryValue[1] (from Product) upscaling: Boolean[1] ttle: String[1]
voltage: Float[1] piecesPerPack: Integer(1] (from BulkPackage) [minPrice: MonetaryValue{1] (from Product) minPrice: MonetaryValue{1] (from Product)
inStock: Integer{] (from BulkProduct) < { B standarcprie: onotaryvatet rom Procuct standardPrice: MonetaryValue[1] (fom Product) standardPrice: MonetaryValue{1] (from Product)
minPrice: MonetaryValue(1] (from Product) J + priceAfterTax(): (rom BulkProduct) id: Stringl 1] (from IdentityProduct) rnayRecommeng !9 Strinal1] (from ldentiyProducy [rasconent >
standardPrice: MonetaryValue[1] (from Produc] o oK(): Monet s from reducedPrice: MonetaryValue[o..1] (from IdentiyProduct) [~ — = = — — reducedPrice: MonetaryValue[0..1] (from IdentityProduct)
Y i i (U
energy(): Float Arrows indicate |ourrency = Currency<NZD>): MonetaryValue (from e() <8k
 priceAfterTax(): MonetaryValue (from BulkProduct) navigability introduced = 06 Jul 2008 " netPrice): MonetaryValue (from IdentityProduct) “hvaluelnStock(): MonetaryValue (from IdentityProduct)
“valuelnStock(): MonetaryValue (from BulkProduct) ItaxType = NORMAL price/ ax(): e (from y :”"”'”‘/U” MonetaryValue (from IdentityProduct
p—— s o — lourrency = Curency<USD> priceAfterTax(): MonetaryValue (from IdentityProduct)
ot Values Z
introduced = 06 Jul 2008 valuelnstockType(> ntroduced =_OSAPI2005 curency = RIS,
I - ltaxType = NORMAL lintroduced = 02 Mar 2004
[. - Operation axRate(-> [RE t=xType = HORMAR
valuelnstockType(-> EXRENER] Values ValuelnStockType()-> taxRate()> R
meta-class name
~DVD* AFMMLx::Meta
~BatteryCell — "DVD_Player* 1 SpaceOdyssee 1 et
1 1 haChi779
. id: Stringl1] (from IdentityProduct) length: Integer(1]
lcapacity = 1.25 BatteryPack™ id {S‘ w"?p[Nm’wﬂw Mmm\y’P‘mduw\‘r B €[0..1] (from IdentityProduct) [produced: Date[1] 0.1
inStock = 0 tinkname |1 EnergeticPlus Pack1o reducedPrice: MonetaryValuel0..1] (from IdentityProduct FnetPrica(): MonetaryValus (from IdentityProduct) ite: String[1]
Imanufacturer = Batteriewerk Duisburg-Essen (nStock = B778 “*netPrice(): MonetaryValue (from IdentityProduct) « priceAfterTax(): MonetaryValue (from IdentityProduct)
minPrice = 1,35 NZD. ontinsbateres |mmen . 1140820 priceAferTax(): MonetaryVaiue (o IdentiyProduct) ooy =0
rechargable = false & - o lpiecesPerPack = 10 pami-= g8 K- -- - IminPrice = 17.99 USD re |
size = AR —— IminPrice = null lrotected = [| extended Variant
IstandardPrice = 1.50 NZD. Link Iprconerrax(> [EERTER | Imobile = false lresolution = 0 !
|valuelnStock()-> resolution = 0 IstandardPrice = 19.95 USD :
standardPrice = 99.99 USD lie = SpaceOdysee
ipriceAfterTax()-> [l lupscaling = false !
valuelnstock()-> (RURINES) Valuelnstock(> :
I
I
“haChi779* ~SpaceOdyssee® = — I
0 dVD_3001 0 spot 0 Movie’ |
spod i
d= s493 0= 508295 Ahascontent
length= 120 & ---—-—--—-—-———-— - - — -
=l = null
Price() produced = 01 May 2001
netPrice()> notprice()> IRGEE |
ltite = Space Odyssey
priceAfterTax()-> priceAfterTax()

666

for financial products. Furthermore, other product types may
require configuration, e.g., picking colours, materials, or extra
features. This may lead to the need for additional levels, which,
in turn, may require contingent level classes [16].

TABLE III
SUMMARY OF IMPLEMENTATION OF REQUIREMENTS

ID Comment

R-1 Each product copy is represented by an LO object.

R-2 The constraint noInstances in
NonIdentifiableProduct prevents the creation of
bulk products at LO.

R-3 The class Product defines common properties of all kinds
of products.

R-4 represented by associations between descendants of
BulkProduct and ProductPackage

R-5 The class BulkPackage is specialized from
NonIdentifiableProduct.

R-6 ensured by descendants of IdentityProduct on L1, all
product copies are instantiated from

R-7 ensured by the classes at L2 all classes representing product
specifications are concretized from

R-8 satisfied by the intrinsic attribute standardPrice in
Product

R-9 satisfied by the intrinsic constraint
reducedPriceSmaller in IdentityProduct

R-10 | satisfied by the intrinsic attribute minPrice in Product
and the constraint minimumPrice in
NonIdentifiableProduct

R-11 satisfied by the intrinsic attribute minPrice in Product
and the constraint minimumPrice in
IdentityProduct

R-12 | addressed through the intrinsic attribute currency within
the class Product

R-13 satified by the intrinsic constraints CurrencyMatchl,
specified in Product and the constraint
CurrencyMatchO, specified in Product

R-14 | The operation taxRate (), specified in the L3 object
Product, returns the respective tax rate for each tax type
assigned (see below).

R-15 | addressed by adding the enumeration type Tax that contains
the values NORMAL and REDUCED and the attribute
taxType: Tax in Product.

R-16 | The intrinsic operation priceAfterTax (), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for LO identity product objects and L1 bulk product objects.

R-17 | satisfied by the two incarnations of the intrinsic operation
valueInStock within the classes IdentityProduct
and NonIdentifiableProduct

R-18 | satisfied by the the operation valueInStock within the
class Product

R-19 | The intrinsic operation priceAfterTax (), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for LO identity product objects and L1 bulk product objects.

R-20 | demonstrated by the the operations
bulkValueInStock (), identityValueInStock (),
and totalvValueInStock () defined in the class
WarehouseManager

R-21 can be done through multiple concretizations of the classes
IdentityProduct, BulkProduct, and
BulkPackage

R-22 | The intrinsic operation priceAfterTax (), separately
specified in IdentityProduct and
NonIdentifiableProduct, calculates the final price
for LO identity product objects and L1 bulk product objects.

R-23 | satisfied by intrinsic attribute introduced in the class
Product

R-24 | addressed by the association recommends

R-25 | The compatability of recommendation association is ensured
through two modeling concepts. The association
mayRecommend serves the specification of allowed
recommendations. In addition, the constraint
properRecommendations ensures that
recommendations can be made only that were approved for
the respective product specifcation types.

R-26 | The constraint noCyclicRecs ensures that L1

descendants of Product cannot recommend themselves.

667

AFMMLx::MetaClass” AWarehouseManager”®
1 WarehouseManager 0 warehouseManager

bulkValuelnStock()-> RREORIEVY
identityValuelnStock()-> (REEISVIN

totalValuelnStock()-> i

bulkValuelnStock(): MonetaryValue
identityVa\uelnStock(): MonetaryValue
ﬂlo(alVa\uelnSlock(): MonetaryValue

Fig. 4. WarehouseManager class on L1 and instance on LO

In general, the effort and risk related to changing a multi-
level model widely depend on how well guidelines 1-3 had
been followed. If these guidelines are satisfied, changing a
model benefits from the tight dependencies between levels. If
that is not the case, these dependencies turn into a serious
disadvantage.

B. Further Aspects of Abstraction

The proposed solution clearly illustrates the benefit of
the additional abstraction enabled by a multi-level modeling
language like the FMMLX. A closer look, however, shows
that there is still room for improvement. At first, this concerns
additional languages constructs.

Our solution satisfies the requirement that a product speci-
fication may only recommend others to which it is entitled to
R-25) by defining two associations and a constraint. However,
since the specification of such a constraint is not trivial and
this kind of dependency between two associations — where
the dependent association is restricted to objects the classes
of which are linked through instantiations of the independent
association — is common, we consider adding a specific con-
cept to the FMMLX as it is already provided by the LML and
Melanee [22]. In this case, the implementation would be built
on the generic pattern all corresponding constraints are based
on. The convenient application of this concept recommends
enhancing the concrete syntax of the FMMLX — for example
by using a directed edge between the edges representing the
respective associations. For a more comprehensive discussion
of associations in multi-level models see [26].

It also inspired us to reconsider our view on potencies. To
express at a higher level already that a class of a certain kind at
a lower level must not be instantiated, the FMMLX requires the
specification of a constraint, while this would not be required
for the use of potencies.

Two further extensions of the language are clearly more
demanding. At first, they concern concepts that enable abstrac-
tions of associations, e.g., by allowing for the specification of
association (meta) types including the deferred instantiation of
cardinalities. In addition, concepts that support dynamic ab-
straction would not only be extremely beneficial for modeling
processes, but also for the specification of operations within
classes. In these cases, one often sees commonalities but lacks
the concepts to express these concisely.

C. Comprehensibility

As far as the comprehensibility of the model in general,
and specifically of modeling constructs such as operations
and constraints are concerned, we are reluctant to offer an

assessment. Even though there is still room for improvements,
we are fairly satisfied with the FMMLX and XModeler™". But
our view is certainly biased. While it is sometimes argued that
multi-level models are difficult to understand, because people
tend to struggle with abstraction, our extensive work with the
construction of corresponding models and languages, as well
as the experience we gathered with teaching MLM, indicate
that the concepts represented in multi-level models are often
perceived as more natural than the workarounds required in
the traditional modeling paradigm. We think that the model
presented here confirms this observation. Nevertheless, the
specification of operations and constraints with the XOCL
require some programming knowledge, as well as knowledge
of the OCL.

VIII. CONCLUSION

The MULTI 2023 Warehouse Challenge proved to be a
useful test case for us. It is suited to demonstrate the expressive
power of the FMMLX and the utility of a development and
execution environment like the XModeler™. At the same time,
it served us to reconsider a few design decisions previously
made with the specification of the FMMLX, which will likely
lead to two specific extensions of the language.

Due to the nature of the MULTI challenge, only a small
range of products was accounted for. While respective so-
lutions should be suited to convincingly show the specific
advantage of multi-level language architectures, models that
cover a wide variety of products would allow for more
impressively demonstrating the power of multi-level modeling
and corresponding tools. While such a project would likely
exceed the capabilities of single research groups, it may be an
inspiring subject of an “open model” [15] project carried out
by the MLM community.

REFERENCES

[1

—

Colin Atkinson, Bastian Kennel, and Bjorn Go. The Level-Agnostic
Modeling Language. In Brian Malloy, Steffen Staab, and Mark van den
Brand, editors, Software Language Engineering, pages 266-275, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

Colin Atkinson and Thomas Kiihne. Processes and Products in a Mul-
tiLevel Metamodeling Architecture. International Journal of Software
Engineering and Knowledge Engineering, 11(06):761-783, 2001.
Colin Atkinson and Thomas Kiihne. Rearchitecting the UML infras-
tructure. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 12(4):290-321, 2002.

Victorio A Carvalho, Jodo Paulo A Almeida, Claudenir M Fonseca,
and Giancarlo Guizzardi. Extending the Foundations of Ontology-
based Conceptual Modeling with a Multi-Level Theory. In Conceptual
Modeling: 34th International Conference, ER 2015, Stockholm, Sweden,
October 19-22, 2015, Proceedings 34, pages 119—133. Springer, 2015.
Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling;
A Foundation for Language Driven Development, 2nd ed. Sheffield:
Ceteva, 2008. https://arxiv.org/pdf/1505.00149.pdf.

Tony Clark, Paul Sammut, and James Willans. Developing Languages
and Applications with XMF. Sheffield: Ceteva, 2008. https://arxiv.org/
pdf/1506.03363.pdf.

Tony Clark and James Willans. Software language engineering with
XMF and XModeler. In Formal and practical aspects of domain-specific
languages: recent developments, pages 311-340. IGI Global, 2013.
Juan de Lara and Esther Guerra. Deep Meta-modelling with MetaDepth.
In Jan Vitek, editor, Objects, Models, Components, Patterns, pages 1-20,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

2

—

3

[l

[4

=

[51

[6

—

[7

—

[8

—

668

[9]

[10

(1

(12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Ulrich Frank. Domain-Specific Modeling Languages: Requirements
Analysis and Design Guidelines. Domain engineering: Product lines,
languages, and conceptual models, pages 133-157, 2013.

Ulrich Frank. Multilevel Modeling: Toward a New Paradigm of
Conceptual Modeling and Information Systems Design. Business &
Information Systems Engineering, 6(6):319-337, 2014.

Ulrich Frank. Designing Models and Systems to Support IT Manage-
ment: A Case for Multilevel Modeling. In MULTI@ MoDELS, pages
3-24, 2016.

Ulrich Frank. Flexible Multi-Level Modelling and Execution Language
(FMML®): Version 2.0: Analysis of Requirements and Technical Ter-
minology. Technical Report 66, ICB-Research Report, 2018.

Ulrich Frank. Prolegomena of a Multi-Level Modeling Method Illus-
trated with the FMML?. In 2021 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion
(MODELS-C), pages 521-530. IEEE, 2021.

Ulrich Frank and Tony Clark. Language Engineering for Multi-Level
Modeling (LE4MM): A long-term Project to Promote the Integrated
Development of Languages, Models and Code. In Jaime Font, Lorena
Arcega, José Fabidn Reyes Romdn, and Giovanni Giachetti, editors,
Proceedings of the Research Projects Exhibition Papers Presented at
the 35th International Conference on Advanced Information Systems
Engineering (CAISE 2023), Zaragoza, Spain, June 12-16, 2023, volume
3413 of CEUR Workshop Proceedings, pages 97-104. CEUR-WS.org,
2023.

Ulrich Frank and Stefan Strecker. Open Reference Models —
Community-driven Collaboration to Promote Development and Dissem-
ination of Reference Models. Enterprise Modelling and Information
Systems Architectures, 2(2):32—41, 2007.

Ulrich Frank and Daniel Topel. Contingent Level Classes: Motivation,
Conceptualization, Modeling Guidelines, and Implications for Model
Management. In Esther Guerra and Ludovico Iovino, editors, Proceed-
ings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems: Companion Proceedings, pages
622-631, New York, NY, USA, 2020.

Manfred Jeusfeld and Christoph Quix. Meta modeling with Concept-
Base. In Proceedings of the Ist International Workshop on Meta
Modeling and Corresponding Tools (WoMM 2005). University of Essen,
2005.

Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin
Schindler, and Steven Volkel. Design Guidelines for Domain Specific
Languages. arXiv preprint arXiv:1409.2378, 2014.

Thomas Kiihne. Tiefe Charakterisierung. In Proceedings of Model-
lierung 2004, pages 121-133, 2004.

Thomas Kiihne and Daniel Schreiber. Can Programming be Liberated
from the Two-Level Style? Multi-Level Programming with DeepJava. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems, languages and applications, pages 229—
244, 2007.

Thomas Kiihne and Manfred Jeusfeld. =~ The MULTI Warehouse
Challenge. https://jku-win-dke.github.io/MULTI2023/files/MULTI%
20Warehouse%?20Challenge.pdf. Accessed: 2023-05-21.

Arne Lange and Colin Atkinson. Multi-level modeling with MELANEE.
In MoDELS (Workshops), pages 653-662, 2018.

Fernando Macias Gomez de Villar, Adrian Rutle, and Volker Stolz.
MultEcore: Combining The Best of Fixed-Level and Multilevel Meta-
modelling. In MULTI 2016: Proceedings of the 3rd International
Workshop on Multi-Level Modelling co-located with ACM/IEEE 19th
International Conference on Model Driven Engineering Languages &
Systems (MoDELS 2016), pages 66-75, 2016.

Bernd Neumayr, Katharina Griin, and Michael Schrefl. Multi-Level
Domain Modeling with M-Objects and M-Relationships. In Proceedings
of the Sixth Asia-Pacific Conference on Conceptual Modeling-Volume 96,
pages 107-116. Citeseer, 2009.

Zoltan Theisz and Gergely Mezei. An Algebraic Instantiation Technique
Tlustrated by Multilevel Design Patterns. In MULTI@MoDELS, pages
53-62, 2015.

Daniel Topel. Associations in Multi-Level-Modelling: Motivation,
Conceptualization, Modelling Guidelines, and Implications for Model
Management. In 2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
pages 502-510. IEEE, 2021.

