Towards Flexible Creation of Multi-Level Models: Bottom-Up
Change Support in the Modeling and Programming
Environment XModeler

Daniel Topel
University of Duisburg-Essen
Essen, Germany
daniel.toepel@uni-due.de

ABSTRACT

A process of a multi-level model creation follows typically the top-
down approach, i.e., it requires first defining concepts and relations
on the highest classification levels, which only then can be used
to create concepts on the lower ones. Empirical insights into the
process of multi-level model creation suggest however, that this
strategy may be counter-intuitive and challenging, especially for
non-experts. This paper addresses this problem by focusing on
the idea of flexible multi-level model creation, understood as an
intertwined application of top-down and bottom-up strategies. As
a first step towards realizing this vision for multi-level models in
general, and those created with the XModeler and Flexible Meta-
Modeling and Execution Language (FMMLY) in particular, in this
paper, we select a set of relevant multi-level refactoring patterns,
adapt them to our approach, and implement them in the supporting
tool. We illustrate the flexible creation process using an exemplary
scenario.

CCS CONCEPTS

+ Computing methodologies — Modeling methodologies; «
Software and its engineering — Domain specific languages.

KEYWORDS

multi-level modeling, flexible modeling process, bottom-up model-
ing, multi-level refactoring patterns, Flexible Meta-Modeling and
Execution Language FMMLX, XModeler

ACM Reference Format:

Daniel Topel and Monika Kaczmarek-Hef3. 2022. Towards Flexible Creation
of Multi-Level Models: Bottom-Up Change Support in the Modeling and
Programming Environment XModeler. In ACM/IEEE 25th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS °22
Companion), October 23-28, 2022, Montreal, QC, Canada. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3550356.3561553

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS 22 Companion, October 23-28, 2022, Montreal, QC, Canada

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9467-3/22/10...$15.00
https://doi.org/10.1145/3550356.3561553

Monika Kaczmarek-Hef3
University of Duisburg-Essen
Essen, Germany
monika.kaczmarek-hess@uni-due.de

1 INTRODUCTION

The term multi-level modeling covers any modeling approach that
aims to provide systematic support for representing multiple classi-
fication levels within a single body of model content [4]. Application
of multi-level modeling comes with numerous potential benefits
(5,7, 12, 16], which have inspired and given rise to a few multi-level
modeling approaches, for instance, potency-based multi-level mod-
eling [5], multi-level objects and relations [28], MultEcore [26, 27],
DeepTelos [22], MetaDepth [10], and the Flexible Meta-Modeling
and Execution Language (FMMLX) [14]. Although each approach
has (on purpose) a different focus, and thus, differences exist when
it comes to, among others, modeling discipline; a typical process
of a multi-level model construction follows a typical process of
meta-model construction [9, 16]. It means that the construction of
a multi-level model requires first defining concepts and relations
on the highest classification level, which only then can be used to
create concepts on lower classification levels. This strategy may
be however counter-intuitive and/or difficult for non multi-level
modeling experts or domain-experts, who may prefer to define first
concepts on lower-classification levels, and only later abstract those
into meta concepts.

This observation has been initially tested from an empirical angle
in [9], where the creation of multi-level models using the FMML*
and its supporting modeling and programming environment, the
XModeler [17], has been investigated. Within the study, data on
subjects’ modeling processes has been collected to identify and
analyze modeling difficulties these subjects face, by using, among
others, the concept of a cognitive breakdown [30]. One of the in-
sights gained from this study is that although the application of
the tool, in that case the XModeler, forced the subjects to design
a multi-level model starting from the highest classification level,
the participants indicated the need to allow for bottom-up design
of a multi-level model as well. This view on the creation process
of a multi-level model is indeed in line with the observation that
objects, or instances, are something familiar to domain experts, in
opposition to classes [25].

Taking the above into account, we postulate an idea of flexible
multi-level model creation, encompassing not only supporting the
top-down strategy, but also supporting a bottom-up creation pro-
cess!. Please note that supporting the bottom-up process might
require applying refactoring of multi-level models [11], and as such

!Please note that we use the term ‘flexible modeling’ in different way than [27]. There
the term flexible multi-level modeling refers to the underlying framework, which is to,
among others, support flexible hierarchies allowing to skip levels or support flexible
model transformations. In our case, we focus on the process of model creation, and
the possibility to follow different modeling strategies at will.

https://orcid.org/0000-0001-6351-5624
https://orcid.org/0000-0002-1621-2775
https://doi.org/10.1145/3550356.3561553
https://doi.org/10.1145/3550356.3561553

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

may come with numerous challenges, such as, among others, deal-
ing with ‘class migration’, merging properties of already defined
concepts, or changing the ‘owner’ of a property definition. In addi-
tion, each change operation may trigger a need to propagate the
changes through the entire multi-level model, both horizontally
and vertically, and must not result in a multi-level model becoming
inconsistent.

The main aim of this paper is to provide a basic support for
bottom-up modeling using FMML* and the XModeler, understood
as a first step towards supporting a fully-fledged flexible creation
of multi-level models. To this aim, after sketching the targeted
process of model creation and reaching awareness of the required
and missing change support in selected multi-level modeling tools,
we adapt and extend the selected refactoring patterns, as proposed
in [11], to specifics of FMMLX, and implement them in the XModeler
tool.

We follow the design science research approach, particularly the
steps of the engineering cycle as detailed in [34]. Therefore, after
reaching the problem awareness, we identify requirements towards
a tool supporting the bottom-up modeling strategy. Based on the
requirements, we design and implement a set of required change
operations in the selected tool. Then, we illustrate the implemented
change operations using an exemplary scenario. Thus, in this paper
we report on the coverage of one full engineering cycle [34].

The paper is structured as follows. After discussing the process
of multi-level models creation, as well as selected strategies and
approaches to change support (Section 2), we present the idea of
flexible modeling (Section 3). There we also point to the extent to
which bottom-up modeling is supported by selected multi-level
modeling tools, and identify a set of change operations that should
be offered to support the bottom-up creation process. Next, in
Section 4, we describe how relevant refactoring patterns can be
adapted for the multi-level FMML* models. Finally, we illustrate
the implemented support for bottom-up modeling using a driving
scenario in Section 5. The paper concludes with final remarks and
an outlook on future work.

2 BACKGROUND

As mentioned in the introduction, different multi-level modeling
approaches have been proposed, sharing a set of common ideas,
cf. [2, 14, 16], such as: (1) support for arbitrary-depth classification
hierarchies, (2) relaxing the type/instance dichotomy, and (3) of-
fering deferred instantiation. However, each approach has (on pur-
pose) a different focus. As a result, the approaches differ when it
comes to, among others, (1) the level of modeling discipline, see,
e.g., [2], (2) the way in which deferred instantiation is designed
and implemented, and (3) additional mechanisms and software tool
support, see, e.g., [19, 20, 24, 27]. The existing multi-level modeling
approaches also differ regarding how the multi-level models are
created, and to what extent performing subsequent changes to the
already created models is supported by the corresponding modeling
tools.

Atkinson et al. [3] elaborate on two possible modes in which
models are developed, namely “constructive” and “exploratory”.
In constructive modeling, sharing similarities with the top-down
modeling, the role of classes (or elements on higher classification

Daniel Topel and Monika Kaczmarek-Hef3

levels) is to “serve as templates from which populations of instances
can be generated at a future point in time” 3, p. 2], and thus, types
come before instances. In turn, in exploratory modeling, sharing
similarities with the bottom-up modeling, the role of classes (or
elements on higher classification levels) is to “capture classifica-
tion information wrapped up in an already existing population on
instances” [3, p. 2]. So it also follows that “the types are usually
identified from, and therefore after, the instances they classify” [3,
p- 4].

As already signalized in the introduction, a typical process of a
multi-level model construction follows the “constructive” approach,
as also done in a typical process of meta-model construction, cf.
[25]. Although first guidelines and heuristics regarding the process
of multi-level creation may be found, e.g., [16], this strategy may be
however counter-intuitive and/or difficult for non multi-level mod-
eling experts or domain-experts [9], who may prefer to first define
concepts on lower-classification levels, and only later abstract those
into meta concepts, i.e., follow the exploratory approach. Following
such an approach however, may require dealing with introducing
(and propagating) changes within multi-level models.

A few initiatives exist already, focusing on managing changes
in the multi-level modeling environment. The existing approaches,
on the one hand, acknowledge the existing extensive efforts focus-
ing on refactoring for programming languages, i.e., restructuring
a piece of code while keeping its external behaviour, e.g., [13, 29],
model refactorings in meta modeling (in the context of two-level
modeling), e.g., [21], as well as existing initiatives to support a
bottom-up meta model construction, e.g., meta-model construction
by example as proposed by [25]. On the other hand, they stress
additional challenges connected with dealing with changes in the
context of multi-level modeling, namely since the number of clas-
sification levels is unlimited, a change to a model element in one
classification level may have an impact on a large number of ele-
ments over an unlimited number of lower and higher classification
levels [1]. In addition, it is important to stress that whereas the
change propagation in some cases may be performed automatically
[1, 11, 32], quite often there is a need to obtain further input from
modelers about the intended effects of changes. Indeed, the intro-
duction of changes/refactoring of multi-level models in most cases
needs to be guided by the modeler [11].

And so, dealing with changes in the multi-level modeling envi-
ronment has been, e.g., studied by [1], where the authors explore
the use of emendation? services in Melanee to repair a multi-level
model upon changing some of its elements, e.g., modifying the
potency of a clabject or adding an attribute. To the best of our
knowledge this is the first work dedicated to ensuring that when-
ever changes are made in a multi-level model, in this case within
ontological levels [1], the collection of data across all levels remains
consistent.

Next, in the context of multi-level modeling in general, and
FMML* in particular, Topel and Benner [32] identify a set of ele-
mentary change operations that should be supported in the context
of maintenance of multi-level models. The focus is assigned to a

2Please note that Atkinson et al. on purpose use the term emendation and not refac-
toring pointing to the semantic difference between the terms [1, p. 195].

Bottom-Up Change Support in the Modeling and Programming Environment XModeler

minimal model and a set of elementary changes only, and thus, the
topic of complex changes (or refactoring) is not tackled.

To the best of our knowledge the most comprehensive study
of change support in the multi-level environment, is the work
of de Lara and Guerra [11], where the authors focus on refactor-
ing of multi-level models that may involve a sequence of modi-
fications, and consider their purpose of use, pre-conditions and
variants. In their work the authors identify seventeen refactor-
ing patterns that apply in case of multi-level modeling and im-
plement selected patterns in the MetaDepth environment. Those
patterns are as follows: (1) collapse clabject with instances/clabject
with type/inheritance hierarchy, (2) set/unset/create/extract clabject
type, (3) set/unset/create feature type, (4) pull up/push down/split
clabject, (5) pull up/push down feature, (6) replace reference by
instantiation, (7) stratify potency. Please note that those patterns
are to help designers rearrange elements both across different lev-
els, as well as within affected levels; and account for the possible
side effects. Although proposed in the context of potency-based
languages, the refactoring patterns, on the conceptual level, should
be also applicable to other tools/approaches supporting multi-level
modeling. Our work addresses this problem by adapting and extend-
ing the selected refactoring patterns, among others, the composite
pattern ‘extract clabject type’, to our approach.

3 TOWARDS FLEXIBLE MODELING:
RATIONALE AND REQUIRED CHANGE
SUPPORT

As discussed in the the previous section, two main strategies of
(multi-level) models construction exist: top-down (constructive)
and bottom-up (exploratory) modeling. Using top-down modeling,
the modeler starts for each hierarchy of concepts from the highest
level of abstraction, defining concepts on the highest classification
levels first, and then concretizing these concepts down towards
lower classification levels. Bottom-up modeling by contrast means
that the modeler starts on a relatively low level of abstraction,
for instance on level 1. Investigating commonalities between the
concepts on lower levels, they will systematically abstract broader
concepts on higher levels. Likewise, where properties are shared
by concepts which have been abstracted over, the modeler will pull
up the definition of those properties to higher levels.

We argue that these two approaches in no way exclude each
other. In our on-going work, see [9], we have been studying the
creation process of multi-level models. The analysis of think-aloud
protocols indicates clearly that constructive and exploratory modes
intertwine in the initial phase of the multi-level model creation, and
that designers are unlikely to follow a strict order, where they would
finish one level of classification before continuing with the next
one. Indeed, we have observed that most of the users start with the
exploratory approach, which gives them some ideas regarding the
potential higher classification levels. Thus, a modeler who creates
a concept on a high level will already have done some bottom-up
abstraction, either in their mind or during a previous iteration of
modeling. Then, they switch to the constructive mode. When some
doubts regarding, e.g., the level of classification at which some
information should be accounted for occur, they switch again to

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

the exploratory mode and investigate the objects they are more
familiar with, in order to find an answer.

In addition to that, both the conducted experiments as well as
our own practical experiences with designing multi-level models,
e.g., [7, 8, 23], clearly indicate that a multi-level model will usually
not be right the first time, and a modeler will likely change their
mind because of various reasons. For instance, a model may change
as the designers gain experience, or when additional scenarios
and/or additional perspectives have been identified that should be
supported by the model. Therefore, there is a clear need to support
introducing changes in multi-level models with the aim to enable
not only a top-down but also a bottom-up modeling process.

Based on the analysis of relevant literature as well as mentioned
experiments, we argue that to enable the bottom-up approach, the
following three requirements constitute a minimal set of operations
that should be supported: (1) Providing a support for changing a
classifier of a selected class/set of classes; (2) Providing a support
for changing an owner of a property (moving the definition of a
property to a higher classification level, pull-up); and (3) Providing
support for applying the change operations 1 and 2 in tandem,
and propagating changes vertically and horizontally, to ensure the
model consistency. Thus, in the light of those requirements, there
is a need to support at least the following refactoring patterns [11]:
the composite refactoring extract clabject type (involving create
clabject type, create feature type, set feature type and set clabject
type), as well as pull up feature, see [11, p. 10].

Taking the above requirements into account, the question ap-
pears to what extent the bottom-up creation process is supported
by multi-level modeling tools. Although a few multi-level model-
ing tools exist, let us focus on two selected ones supporting two
different families of approaches, i.e., Melanee and XModeler.

Melanee is a multi-level graphical modeling environment sup-
porting the potency-based multi-level modeling [5]. In deep mod-
eling the so-called ontological classification relationships are gov-
erned by potency, and the modeling levels are defined according
to the principles of strict modeling. In Melanee, deep models are
represented by two languages: (1) the Level-agnostic Modeling
Language (LML), which contains constructs such as Entities, Con-
nections and Generalizations, and (2) a multi-level variant of OCL
[18]. As deep instantiation is governed by strict meta modeling
[2], thus, by default modelers are asked to follow the top-down
modeling strategy. Nevertheless, thanks to the emendation service
already mentioned [1], some basic change operations within and
across levels are possible. However, although Melanee offers sup-
port in updating and propagating changes throughout the created
model, an explicit support for bottom-up modeling is missing, e.g.,
there is no functionality supporting users in abstracting a set of
concepts into a new supertype or ontological type.

XModeler is a meta-modeling tool supporting integrated model-
ing and programming [6, 14]. Models can be edited graphically or
using the command line interface. XModeler uses a dedicated lan-
guage called XOCL, based on a kernel model called XCore, on which
all other features of the XModeler are built on. As the architecture
of XModeler keeps code and model within the same framework,
any changes in the model go into effect immediately without gener-
ating a new version of code. That means for example, that when a
new class is added to the model, its constructor becomes available

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

and can be invoked to create instances. These instances themselves
can then be referenced, e.g., in the body of operations. Operations
in turn can be compiled and invoked at runtime. While the tool
supports multi-level modeling with FMMLX, only a specific order of
modeling is currently supported, i.e., top-down, with a limited set
of change operations that may be performed, such as, e.g., changing
the already assigned level of intrinsicness to properties, raising the
level of classification of a meta class, see the elementary change
operations defined in [32]. Nevertheless, such operations as chang-
ing the meta class classifier, abstracting a set of classes into one
common concept, or moving a definition of a property to a higher
classification level, are not offered to users.

Similarly to Melanee and XModeler, also other existing approaches
and their supporting tools, see e.g., [20], support mostly the top-
down modeling strategy, and offer a set of rather elementary change
operations. Indeed, the automated support for bottom-up modeling,
especially abstracting concepts, is mostly missing.

4 BOTTOM-UP MODELING WITH FMMLX
AND XMODELER

In the following we focus on the implementation of the selected
change operations supporting the bottom-up modeling process in
the context of FMMLX and the XModeler>.

4.1 Main Design Decisions and Specific
Characteristics of FMML* and XModeler

As already mentioned, given that the existing multi-level modeling
approaches quite significantly differ in their details, the refactorings
in [11] proposed in the context of potency-based languages, cannot
be used in the FMMLX approach without being adapted. The main
concept in the FMMLYX, please see [15] for details, is a MetaClass,
which contains the additional features for multi-level modelling,
such as level, as well as the altered machinery, i.e., the ‘Meta-
Object-Protocol’. Each top-level concept of a model is an instance
of MetaClass. Additionally, it also inherits from MetaClass. This
allows these concepts to be in turn instantiable and can be repeated
down to the desired level. Furthermore, properties in FMML* al-
ways come in pairs of a property definition and a property value,
i.e., attributes and slots or associations and links. A property defini-
tion has an intrinsicness level assigned pointing to the exact level
of classification (so called intrinsicness), where the property value
will be assigned/known. Also FMMLX includes operations, which
can be defined and can be invoked. Additionally, operations can be
overridden, a feature not shared with attributes and associations,
and therefore not taken into account in [11]. Multiple inheritance
is allowed in FMMLX to a certain extent, requiring additional con-
sistency checks.

As already mentioned in the previous section, the XModeler is
a tool supporting integrated modeling and programming, and the
code and model are kept within the same framework. Thus, any
changes in the model go into effect immediately without generating
a new version of code. In this context please note that supporting
a bottom-up modeling, especially, abstracting the already defined
concepts into higher-level ones, creates a problem which has been

3The XModeler tool is available at https://www.wi-inf.uni-duisburg-
essen.de/LE4MM/xmodelerml/#download.

Daniel Topel and Monika Kaczmarek-Hef3

widely deemed violating a main principle, namely that an instance
would exist before their class has been created. One would either
need to adapt the existing instance to its new class, which might
even be impossible in a strictly typed language, or a new instance
has to be created, its properties transferred, then all references to
old instance be diverted to the new one, before the old one finally
needs to be disposed of, each step in its own way prone to mistakes
from oversight. While it is clear that class migration cannot be
avoided, it is nevertheless necessary that its application should
be restricted to a certain extent, basically through additional pre-
conditions, in order to avoid complexity, which is not needed in the
scope of this work, see also ‘C: Restrictions on Class Migration’.

4.2 Added Change Operations and Their
Implementation

In the following, the required change operations realizing the rele-
vant refactoring patterns, required to support the bottom-up model-
ing in the XModeler are described: (1) Operations to add a new meta
class and to add a new superclass to an element. (2) An operation
pulling up a property. (3) An operation used to classify a number
of classes and pulling up properties in one go. (4) Additionally, as
classifying has a precondition regarding the levels involved, an
operation manipulating the levels beforehand.

Each change operation is described considering the pre-condition,
post-condition, as well as the operation itself. Please note that when
performing user-initiated changes, the core assumption is that the
multi-level model has been valid before the change has been initi-
ated, and it follows, that the multi-level model shall also be valid
after the change has been executed (propagated vertically and hor-
izontally). The validity of a multi-level model in case of FMML*
and the XModeler means that it has to adhere to the XCore/FMML*
meta model [15], that declares the admissible model elements, prop-
erties and relations, as well as a rich set of XMF constraints that
models should fulfill. Note here that the requirements towards a
FMML* multi-level model being valid, among others due to not
adhering to strict meta modeling rules [14], differ from the ones
for potency-based modeling, as defined in [1, p. 199] or [11].

The description of the implemented operations follows.

4.2.1 Change Operation: classify. This change operation replaces
the default meta class of a given element with a given meta class. It
corresponds to ‘set clabject type’ refactoring pattern, cf. [11]. It is
further similar to ‘create clabject type’ with the only difference that
the latter creates that classifying class within a single refactoring. In
this approach, if that class is not yet existing, the operation ‘create
meta-class’, which is not within the scope of this paper, cf. [32],
must be preformed first. Also it must be taken into account, that it
is possible that since that operation was performed, the meta class
may have some properties added already.

Pre: The given element must not have a non-default meta class
yet. Furthermore the level of the new meta class must be exactly one
level above the level of the element to be classified. Where the new
meta class already has properties, they must not collide with the
properties of the given element. Otherwise the user input dialog for
pulling up properties, cf. ‘D. Options for pulling up properties’, must
be presented. As inheritance in FMML* is only allowed between

Bottom-Up Change Support in the Modeling and Programming Environment XModeler

elements which have the same meta class, they must be migrated
at the same time.

Post: All elements supplied are a direct instance of the supplied
meta-class.

Change Operation Scheme:

o The elements supplied are checked whether they are on the
correct level and are a direct instance of the default meta
class.

e The elements supplied are checked whether they are in
a subclassing relationship and whether the corresponding
super/sub-classes are supplied as well.

o The properties of the supplied classes are checked whether
there is any kind of collision.

o A user dialog may be presented if meaningful to resolve
those collisions.

e The properties are renamed or removed, in line with the
decisions made by the user.

e The property values of the properties to be merged are
stored.

o The properties to be merged are removed.

o The class of the supplied elements is changed to the supplied
meta class.

o The stored property values are recovered.

4.2.2 Change Operation: addParent. This change operation adds a
superclass to another class. There seems to be no corresponding
refactoring pattern in [11]. However it is similar to ‘classify’ in the
sense that an element gains an additional ancestor with possible
conflicting properties. Therefore no schema is given here.

Pre: The classes to be connected by inheritance must be direct
instances of the same meta class. They must further be on the same
level, which is guaranteed unless they are direct instances of the
default meta class. Also they must not form an inheritance cycle, i.e.,

the new super-class must not be a descendant of the new subclass.

Where the properties of both elements collide, the user must be
prompted to resolve those.

Post: The supplied classes form an inheritance relationship. There
is no cyclic inheritance.

4.2.3 Change Operation: pullUpProperty. This change operation
takes one property from a given class and pulls it up to its meta
class, superclass, or any other ancestor. It corresponds to ‘pull up
feature’ refactoring pattern, cf. [11]. However, this operation does
not require the property to be present in all descendants of the new
owner of the property. On the contrary, in such a case the — until
now — independently from each other existing properties must be
explicitly flagged as sharing an identity.

Once the property is pulled up, the change will apply to all
descendants of the new owner of the property. Additionally one
property from each of the affected classes can be selected to be
merged into this property at the same time. This not only caters
for properties with the same name, but also for others, where the

name may differ, but they are meant to represent the same subject.

If, on the other hand, the names collide, but do not represent the
same subject, there is the option to rename that property to avoid
a collision. Depending on the type of property and its ability to be
overridable, there must be no property in the affected classes with

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

the same name as the given property, unless is has been explicitly
selected to be merged and has a compatible type. From each affected
class only one property may be merged. Also, renaming properties
must adhere to the same rules as for an atomic name change. The
property will then be pulled up, causing all the descendants of the
new owner, on the respective level, to gain property values where
applicable. The property values of the properties to be merged
will now be referred through the new property, cf. the scenario in
Sect. 5.
Change Operation Scheme:

o The selected property is checked, whether it causes a name
collision in the target class.

e Where necessary, the user is prompted to keep, merge, re-
name or drop any property in the descendants of the target
class. By default the choice for unaffected properties defaults
to ‘keep’.

o The properties are renamed or removed when decided to do
so by the user.

o The property values of the properties to be merged are
stored.

o The properties to be merged are removed.

o The stored property values are recovered.

4.2.4 Change Operation: classifyAll. This change classifies a set of
elements, which will become direct instances of a newly created
meta class. It furthermore pulls up a set of properties, for each of
which a set of properties will be merged into it.

Basically this change operation can be combined from classify
and pullUpProperty, as well as the very basic change operation
for adding a new element, which is not covered in this work. It
corresponds to ‘extract clabject type’ refactoring pattern, cf. [11]
applied together with ‘pull-Up features’.

Pre: The name for the new meta class must be unique. The ele-
ments in the set must not have a non-default meta class yet and
must be on the same level. A property to be pulled up must sat-
isfy the (slightly adapted) preconditions from pullUpProperty, as
respectively do the properties to be merged into those.

Post: The new meta class is situated one level higher that the
elements in the set, and contains the properties which have been se-
lected to be pulled up. The existing property values in the instances
remain unchanged, albeit under a new name, if the property has
been merged. All instances which did not have that property before
gain a new default property value.

Change Operation Scheme:

e A new class is created on a level one higher than the level of
the classes to be classified.

o The classes to be classified are migrated to the newly created
class.

o The user is prompted to pull up, keep, merge, rename or drop
any property in the descendants of the newly created class.
By default the choice for unaffected properties is set to ‘keep’.
However, when a property is chosen to be pulled up, the
resolution for conflicting properties defaults to ‘unresolved’.
Only when no property remains unresolved, the process
continues.

e The properties are renamed or removed, in line with the
decisions made by the user.

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

e The property values of the properties to be merged are
stored.

e The properties to be merged are removed.

o The properties to be pulled up are pulled up, with the prop-
erty values remaining in place or if not yet existing are set
to the default value.

o The stored property values are recovered, replacing the de-
fault value set in the previous step.

4.2.5 Change Operation: liftUpHierarchy. This change operation
lifts up a subset of a model, namely all classes, which are related
to each other through a path of ancestry. The number of levels
to be lifted up is arbitrary. There seems to be no corresponding
refactoring pattern in [11], which could be explained by the fact
that cross-level relationships, which may be the consequence from
performing this operation, are prohibited in their and some other
approaches.

Pre: The set of supplied model elements contains only such el-
ements that all ancestors and descendants of it are in the set as
well.

Post: The level of all elements is increased by the given number.
The instantiation level of properties is increased accordingly, so
that the property values keep their owner.

Change Operation Scheme:

o The level of all elements is increased by the given number.
o The instantiation level of all properties is increased by the
given number.

4.3 Restrictions on Class Migration

The already described operations require handling class migration.
The strongest restriction would be to allow only elements which
are direct instances of MetaClass to be migrated. The classes they
will be migrated to inherit from MetaClass by the rules of FMMLX.
As such any existing property values are those from MetaClass or
its ancestors and will therefore be equally present in the migrated
class. That means all properties required in the meta model, or for
the functioning of the tool, remain unchanged.

The element will only gain the user defined property values
from the class it is migrated to. The change operation will therefore
have to deal with similar problems as those which add properties
to classes with existing instances. This type of problem has been
already widely discussed [11, 33]. For the scope of this work, we
will assume that the property is initialized with a null-value or a
default value, leaving it to the modeler to later add the values where
necessary.

4.4 Options for Pulling Up Properties

The support for flexible modeling in general, and for bottom-up
model creation in particular, can be only semi-automated, as only
a user himself/herself can indicate the intended way the changes
should be propagated, cf. also [1]. One of such operations is deciding
what should happen with properties of classes being abstracted.
Here, a designer is presented with possible options and needs to,
for each property within each class, decide what should happen.

4.4.1 Properties of the Target Class. For properties already existing
in the target class, the only option is to keep the property. The

Daniel Topel and Monika Kaczmarek-Hef3

reasoning behind this is that any other change, like, e.g., renam-
ing, can be done separately beforehand without complicating this
change operation. The properties are nevertheless shown in the
dialog for the convenience of the user, as they may cause conflicts
with properties of the same name in the source classes, which are
easier to detect as such. In any case, the properties of the target class
have priority, and the conflict has to be dealt with in the affected
source classes.

4.4.2 Properties of the Source Classes. The designer, for each prop-
erty of each source class, needs to select one of the following op-
tions.

e Keep: When the property is not to be pulled up, this is the
default choice. This option requires the property to be not in
conflict with any property in the target class, either already
existing or being pulled up during this operation. This option
does not change anything.

o Keep as: This option is intended to be used for properties
not to be pulled up, but being in conflict with a property in
the target class. This option changes the property name and
then leaves it in place.

e Pull up: This option moves the property into the target
class. That requires the target class to not have any conflict-
ing properties. When selected, this may render the selected
option for other properties invalid. This option takes the
same priority as “Keep” for the target class properties. When
performed, this option changes the owner of the property,
causing some descendants of the target class to gain a prop-
erty value. The question remains how those new values shall
be initialized. However, that issue is the same one, as caused
by the change operation for adding a new property to a class,
which already has instances, cf. [32].

e Merge into: Where a property is to be pulled up, but in
conflict with another property, which is to be pulled up from
a different source class, there is an option of merging those
properties into one. It is not possible to merge a property of
a source class with a pre-existing property from the target
class, as it would cause ambiguities, namely the question
which values to keep. If performable, the merging option
copies the values from this property into the newly created
value slots of the property to be merged into.

o Drop: This option allows a property to be dropped. Basically
the separate change operation for removing the property is
invoked beforehand.

e Other: It is possible to offer further options for convenience.
For instance “Pull up” could also have a version were the
property is renamed. But the options shown above, together
with using other change operations in advance should cover
a vast majority of the use-cases.

e Unresolved: The dialog also shows this option, which is
the default selection initially, intended to push the modeler
into actively selecting a meaningful solution. As long as
any selection is still unresolved, or any other selection is in
conflict with another, the dialog box does not allow the user
to proceed.

Bottom-Up Change Support in the Modeling and Programming Environment XModeler

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

W] Merge Properties into SoftwareServer X
Owner Name Level Property Type Value Type Resolve Merge With
s actualload 0 Attibute Float MovewP -
s brand 0 Attribute String MERGEWITH ~ | vendor -
s commonGatewaylnte... 0 Attibute Boolean MOVEWP ~
iis missionCritical 0 Attibute Boolean MOVEWP ~
s version 0 Attribute String MOVEWP ~
TomCat load 0 Attibute Float MERGEWITH ~ | actualload -
TomCat maintenanceCost 0 Attibute MonetaryValue KEEP -
TomCat vendor 0 Attibute String MOVEWP ~ AA
TomCat version 0 Attribute String MERGEWITH ~ | version J
Cancel [¥ actualLoad: Float[1]
[t commonGatewaylnterface: Boolean[1]
y ' . [{ missionCritical: Boolean[1]
- AeLs [y vendor: String[1]
([¥ version: String[1]
~MetaClass”* “MetaClass”* ASoftwareServer® ASoftwareServer®
1 TomCat 1 ns 1 TomCat 1 ns
load: Float[1] i) actualLoad: Float[1] [t maintenanceCost: MonetaryValue[1] [Y actualLoad: Float[1] (from SoftwareServer)
maintenanceCost: MonetaryValue[1] [t brand: String[1] [t actualLoad: Float[1] (from SoftwareServer) [commonGal yinterface: Boolean[1] (from SoftwareServer)
vendor: String[1] [t commonGatewayInterface: Boolean[1] [y commonGatewayInterface: Boole [l missionCriti Boolean[1] (from vareServer)
version: String[1] [§ missionCritical: Boolean[1] [missionCi Boolean[1] (from Sof [vendor: String[1] (from SoftwareServer)
[version: String[1] I vendor: string[1] (from SoftwareServer) [version: String[1] (from SoftwareServer)
{§] version: String[1] (from SoftwareServer)
ATomCat” ASA ATomCat* AlSA
0 tomCat1 0 lis1 0 tomCat1 0 lis1
load = 2.21 actualload = 0.14 actualload = 2.21 actualload = 0.14
maintenanceCost = 55EUR brand = Microsoft commonGatewaylinterface = false commonGatewaylinterface = false
lvendor = Apache commonGatewaylinterface = false maintenanceCost = 55EUR missionCritical = false
version = 10 missionCritical = false missionCritical = false vendor = Microsoft
version = 10 vendor = Apache version = 10

version = 10

Figure 1: Application of ‘classifyAll’ on two concepts on L1

4.4.3 Dealing with Different Kinds of Properties. The first kind of
property, which is generally investigated are attributes and their
counterpart, the slots. This is the case here as well, and the treatment
of properties presented above therefore apply to those as described.
However, there are also other properties, namely operations, con-
straints and associations, which deviate from that description to a
certain extent.

Operations do not have a value counterpart, which needs to be
preserved. As such, merging is not applicable. Another difference
is the fact, that operations can be overridden, and as such have a
different behaviour regarding conflicts. In most cases an element
may have an operation matching the signature of an operation in
any of its ancestors. One issue however is multiple inheritance. It
must be ensured that no element has any ambiguous operations.

Constraints can be treated similar to operations, as their value
counterpart — the constraint report — is not persistent. However,
in contrast to those, they cannot be overridden.

A further issue affecting operations and constraints is that they
contain code, which may refer to other classes and features. When
those are altered, the code may no longer be executable. The code
is stored in XModeler as an expression tree which may be a starting
point for adapting them in a future work. However, as XMF is not
typed language, this complicates the matter even further.

Associations do have a counterpart, namely links. Those need
to be migrated to other associations, where they are merged. Also
the question of conflicts is still subject to discussions, involving the
number of identifiers an association has, and in which name-spaces
they exist.

5 EXEMPLARY SCENARIO

As already mentioned, the change support for bottom-up modeling
is guided by the designer, who needs to decide where and how the
changes should be performed. It follows that after the user selects
a change operation on some element(s) (e.g., classifyAll), first the
pre-conditions are being checked, the change operation executed
and propagated horizontally and vertically, if necessary, to repair
all invalid elements.

Let us consider the following scenario to illustrate the way that
the concept of bottom-up modeling, and thus the discussed change
operations, are implemented in the XModeler. This scenario illus-
trates a typical process of a multi-level model creation that emerges
based on our empirical investigations.

Let us assume that a model designer wants to create a multi-level
model to support analyses and activities in the field of IT infrastruc-
ture management. As such, the multi-level model should provide
relevant, in the light of the defined goals, characteristics of IT arte-
facts being part of an enterprise information systems, e.g., servers,
hardware, network configuration. The model designer working on
a daily-basis with the IT components is at the same time a domain-
expert. Following the top-down approach, as initially imposed by
the XModeler, the model designer would need to identify the most
generic concept, and the highest classification level relevant, in
order to start the creation process. Whereas one could be assuming
that a suitable candidate for a most generic concept could be, e.g.,
an ‘IT artifact’, determining the level of classification at this point
of time is problematic.

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

Daniel Topel and Monika Kaczmarek-Hef§

commonGatewaylnterface: Boolean[1]

vendor: String[1]
actualLoad: Float[1]
missionCritical: Boolean[1]

version: String[1]

customMade: Boolean[1]
muItiTasking: Boolean[1]
muItiUser: Boolean[1]

reaITime: Boolean[1] _\

sourceCodeAvaiIabIe: Boolean[1]

ﬂcostPerLicence: MonetaryValue[1]
missuedOn: Date[1]
EnoOfLicences: Integer{1]

commonGatewaylnterface: Boolean[1]

actuallLoad: Float[1]

1 “So&walllf;Server" | 1 "Soft.::)a:zsairver" ﬂversion: String[1]
w
commonGatewaylnterface = false ‘lgmaintenanceCost: MonetaryValue[1]
vendor = Microsoft commonGatewaylnterface = false AOperatingSystem” AOperatingSystem”
vendor = Apache Windows Apple
customMade = false customMade = false
AlSA R TOGaTA multiTasking = true multiTasking = true
0 st 0 tomCat1 multiUser = true multiUser = true
realTime = true realTime = true
actualload = [§G actualload = 2] sourceCodeAvailable = false | |sourceCodeAvailable = false
missionCritical = false | |maintenanceCost= 55EUR
version = 10 missionCritical = false
version = 10

AMetaClass”®
SoftwareSystem
puIIUpProperty il customMade: Boolean[1]
il sourceCodeAvailable: Boolean[1]

i} vendor: String[1]

()] issuedOn: Date[1]

il maintenanceCost: MonetaryValue[1]
) missionCritical: Boolean[1]

)] noOfLicences: Integer{1]

] version: String[1]

classifyAll

multiTasking: Boolean[1]

multiUser: Boolean[1]
realTime: Boolean[1]

costPerLicence: MonetaryValue[1]

ASoftwareServer? ASoftwareServer” AOperatingSystem” AOperatingSystem”
1 s 1 TomCat 1 Windows 1 Apple
commonGatewaylnterface = false | [commonGatewaylinterface = false customMade = false customMade = false
customMade = false customMade = false multiTasking = true multiTasking = true
sourceCodeAvailable = false sourceCodeAvailable = false multiUser = true multiUser = true
vendor = Microsoft vendor = Apache realTime = true realTime = true
sourceCodeAvailable = false | |sourceCodeAvailable = false
st “TomCat" vendor = Microsoft vendor = Apple

0 ns1 0 tomCat1

actualLoad = 0.14 actualLoad = 2.21

issuedOn = 01 Jul 2017 issuedOn = 01 Apr 2022

maintenanceCost = 67EUR | |maintenanceCost = 55EUR

missionCritical = false missionCritical = false

noOfLicences = 0 noOfLicences = 0

version = 08.15 version = 2.2.1b

Figure 2: Application of ‘classifyAll’ and ’pullUpProperty’ in the further modeling phase: to abstract two concepts on L2, and
to pull up a property from a concept on L1 to the concept on L3, respectively

Therefore, the model designer starts exploring the domain, and
decides to start modeling by focusing on the actual elements of
the infrastructure, e.g., server Apache TomCat version 10 or Mi-
crosoft IIS version 10. Considering characteristics of selected types
of servers, the designer defines the classes for those concepts on
the L1 level, Fig. 1.A. For each class, TomCat and IIS, respectively,

the multi-level model designer defines the properties (attributes
and operations), and associations, as the user deems relevant.
Now, after instantiating the respective classes on L0 level, Fig. 1.A,
the model designer focuses on the fact that actually: (1) both Tom-
Cat and IIS are software servers, and thus, share some elements
of the description, and that (2) some slot values on L0 (e.g., that
TomCat is offered by Apache Organization), actually are known

Bottom-Up Change Support in the Modeling and Programming Environment XModeler

already earlier, and should be thus assigned to the corresponding
elements on the L1 level. Therefore, as the multi-level model de-
signer recognizes the potential to abstract the selected concepts
into one common meta class (classifier), the designer decides to
introduce this change to the model first, before dealing with other
issues. Thus, the user marks the classes of interest and selects the
classifyAll functionality. As the selected classes fulfill the precondi-
tion, i.e., they have been defined at the same classification level and
are of default meta class type, the change operation is triggered.

In the process, the user is prompted to confirm and adjust, if
needed, the selection of concepts, and to provide a name for the to-
be created meta class. The new meta class will be situated one level
higher than the concepts being abstracted, so in our case on level
L2. At this point in time, in the background, the class migration
takes place in line with ‘classifyAll’, see the previous section for
details.

In the process, a dialog box is presented to a user, Fig. 1.B, al-
lowing him/her to decide what should happen with properties
already defined, i.e., for each property a decision to keep, move_up
or merge_with needs to be made, Fig. 1.B. In case some conflict
is identified, the property causing the conflict is marked, and the
status is set to unresolved. Let us assume that the designer decided,
e.g., that whereas attributes defining the average load or kernel
space, should stay with their respective owner (option: keep), at-
tributes vendor and brand should be merged into one attribute
(under the name vendor), and its definition should be moved to the
newly created meta class. The same should also happen with the
version (merging and moving up). The attribute mission critical
(defined only in IIS), should be moved up. In effect, those properties
will be moved to a newly created meta class and the changes intro-
duced are propagated along the hierarchy, in that case, to already
existing concepts on L1 and L0. This is done automatically without
user’s intervention. In that way the multi-level model becomes
again consistent, see Fig. 1.C.

Please note that at any point of time the designer may also
use the already available operations offered by the XModeler, like,
e.g., changing the intrinsicness level, editing the properties, or
associations, see also [32], to adjust the model further.

The model designer continues the process and models other
types of IT artifact, among others, Operating System (OS) with such
types as Windows OS and its versions, Fig. 2 (the upper model).
Again, the multi-level model designer notices that both Software
Server and Operating System have some commonalities, and decides
to abstract them into a common (meta) class Software System.
Also in this step, similarly to the already described scenario, a
user uses the ‘classifyAll’ operation in order to obtain support
in creating a new meta class one level higher and changing the
classifier of the selected concepts. After the designer decided what
should happen with the properties from the classes to be abstracted,
the corresponding changes are carried out, see Fig. 2, and again
propagated vertically (this time from L3 to L0), and horizontally, to
all relevant concepts.

At any point, if the designer notices that the decision regarding
the properties has been incorrect, or that the level at which a given
property has been defined needs to be adjusted, there is a possibility
to move the attribute to another classification level. In our case the
designer decides to move the attribute ‘maintenance cost’ defined

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

within the TomCat two levels higher, i.e., to the *SoftwareSystem’,
by initiating the ‘pull up property’ operation, Fig. 2. The relevant
change, i.e., changing the owner of the attribute, is propagated down
to all descendants of the respective meta class Software System.
It follows that also instances of IIS, Windows and Apple have the
corresponding slot value, initially empty, and the already provided
slot-value, defined for the instance of the TomCat, is kept. The
designer may also finally adjust the intrinsicness level of the already
mentioned property vendor and change it to ‘1’ (by using the built-
in ‘Change property level’ operation).

6 CONCLUSIONS

In this paper we have discussed the need to support flexible multi-
level modeling understood as intertwined application of top-down
and bottom-up creation process. Whereas the top-down approach,
as well as introducing changes to the already created multi-level
model, e.g., in terms of changing the name of the class or adjusting
the properties, are supported by existing tools, the support for
bottom-up modeling is mostly missing. Therefore, we adapted a few
selected multi-level model refactoring patterns and implemented
them in the XModeler, to support the bottom-up creation process.

When it comes to our future work, five main avenues may be
identified. Firstly, in this work we assumed that the task of deriv-
ing (meta) classes from their instances is performed by a model
designer. Nevertheless, some further automation of this process is
envisioned. Similarly, like in the field of ontology engineering a
kind of “reasoning” services aiming at identifying (meta)classes or
inheritance relations are to be investigated, cf, also [11].

Secondly, additional functionalities are needed in order to sup-
port the creative process of multi-level model creation. One of the
missing aspects, is that for now, a model designer needs to manually
adjust the existing associations and links. Providing an automated
support for that is part of our on-going work. Furthermore, in the
very early stage of the model creation, it would be useful to be
able to state, e.g., that some property may be part of the concept
description, however, without providing other details like the data
type or the intrinsicness level. Although one could argue that this
information might be expressed, e.g., in the form of a comment
attached to some concept, a more structured way to capture this
information would be desired.

Thirdly, an alternative design of the approach to propagate
changes and ensure the validity of multi-level models is to be inves-
tigated. We find especially the idea of adopting the constraint-based
refactoring, as described in [31], to multi-level setting, appealing.

Fourthly, as the change operations discussed alter the model
semantics, it is crucial that a user comprehends the effects of the
change operation, before the change is performed. Therefore, we
envision designing relevant mechanisms making all of the con-
sequences explicit: we want to improve the understandability of
the side effect by providing more comprehensive description and
case-specific feedback regarding the changes to be performed.

Finally, all the implemented mechanisms supporting the bottom-
up modeling process, as well as our driving assumptions, need to
be further evaluated by users. Therefore, we want to continue our
empirical studies of the act of multi-level model creation. To this

MODELS ’22 Companion, October 23-28, 2022, Montreal, QC, Canada

aim, a next round of experiments with the new version of XModeler
is planned.

REFERENCES

[1] Colin Atkinson, Ralph Gerbig, and Bastian Kennel. 2012. On-the-Fly Emendation

—

=

[12]

[13

[14

[15]

[16]

[17

[18

[19

[20

[21]

[22

[23

of Multi-level Models. In Modelling Foundations and Applications, Antonio Valle-
cillo, Juha-Pekka Tolvanen, Ekkart Kindler, Harald Storrle, and Dimitris Kolovos
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 194-209.

Colin Atkinson, Ralph Gerbig, and Thomas Kithne. 2014. Comparing multi-level
modeling approaches, In MULTI 2014. CEUR Workshop Proceedings 1286, 53-61.
Colin Atkinson, Bastian Kennel, and Bjérn Gof8. 2011. Supporting constructive
and exploratory modes of modeling in multi-level ontologies. In Procs. 7th int.
workshop on semantic web enabled software engineering. 1-15.

Colin Atkinson and Thomas Kiihne. 2001. The Essence of Multilevel Metamodel-
ing. In UML 2001. Springer, London, 19-33.

Colin Atkinson and Thomas Kiithne. 2008. Reducing accidental complexity in
domain models. SoSyM 7, 3 (2008), 345-359.

Tony Clark, Paul Sammut, and James Willans. 2008. Applied metamodelling: a
foundation for language driven development. Ceteva, Sheffield.

Sybren de Kinderen and Monika Kaczmarek-Hef. 2021. Making a Case for
Multi-level Reference Modeling — A Comparison of Conventional and Multi-
level Language Architectures for Reference Modeling Challenges. In Innovation
Through Information Systems, Frederik Ahlemann, Reinhard Schiitte, and Stefan
Stieglitz (Eds.). Springer International Publishing, Cham, 342-358.

Sybren de Kinderen, Monika Kaczmarek-Hef3, and Simon Hacks. 2022. Towards
Cybersecurity by Design: A multi-level reference model for requirements-driven
smart grid cybersecurity. In 30th European Conference on Information Systems -
New Horizons in Digitally United Societies, ECIS 2022, Timisoara, Romania, June
18-24, 2022, Roman Beck, Dana Petcu, Marin Fotache, Sabine Matook, Remko
Helms, Martin Wiener, Lazar Rusu, and Tuure Tuunanen (Eds.). https://aisel.
aisnet.org/ecis2022_rp/89

Sybren de Kinderen, Monika Kaczmarek-Hef, and Kristina Rosenthal. 2021. To-
wards an Empirical Perspective on Multi-Level Modeling and a Comparison with
Conventional Meta Modeling. In ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion, MODELS 2021 Companion.
IEEE, 531-535.

Juan de Lara and Esther Guerra. 2010. Deep Meta-modelling with MetaDepth. In
Objects, Models, Components, Patterns, Jan Vitek (Ed.). Springer Berlin Heidelberg,
1-20.

Juan de Lara and Esther Guerra. 2018. Refactoring Multi-Level Models. ACM
Trans. Softw. Eng. Methodol. 27, 4 (Nov. 2018), 17:1-17:56. https://doi.org/10.
1145/3280985

Juan de Lara, Esther Guerra, and Jesus Sanchez Cuadrado. 2014. When and How
to Use Multilevel Modelling. ACM TOSEM 24, 2, Article 12 (Dec. 2014), 46 pages.
Martin Fowler. 2018. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional.

Ulrich Frank. 2014. Multilevel Modeling — Toward a New Paradigm of Conceptual
Modeling and Information Systems Design. BISE 6, 6 (2014), 319-337.

Ulrich Frank. 2018. The Flexible Multi-Level Modelling and Execution Language
(FMMLx). Version 2.0: Analysis of requirements and technical terminology. Techni-
cal Report. ICB-Research Report.

Ulrich Frank. 2022. Multi-level modeling: cornerstones of a rationale. Softw. Syst.
Model. 21, 2 (2022), 451-480.

Ulrich Frank, Luca L. Mattei, Tony Clark, and Daniel Topel. 2022. Beyond Low
Code Platforms: The XModelerML - an Integrated Multi-Level Modeling and
Execution Environment. In Modellierung 2022 Satellite Events, Digital Library,
Gesellschaft fur Informatik, MJ. Michael, J. Pfeiffer, and A. Wortmann (Eds.).
235-244.

Ralph Gerbig. 2017. Deep, seamless, multi-format, multi-notation definition and
use of domain-specific languages.

Muzaffar Igamberdiev, Georg Grossmann, and Markus Stumptner. 2016. A
Feature-based Categorization of Multi-Level Modeling Approaches and Tools.
In MULTI 2016 (CEUR Workshop Proceedings, Vol. 1722), Colin Atkinson, Georg
Grossmann, and Tony Clark (Eds.). CEUR-WS.org, 45-55.

Santiago P. Jacome-Guerrero and Juan de Lara. 2020. TOTEM: Reconciling
multi-level modelling with standard two-level modelling. Computer Standards &
Interfaces 69 (2020), 103390. https://doi.org/10.1016/j.¢si.2019.103390

Matthias Jahn. 2014. Evolution von Meta-Modellen mit sprachbasierten Mustern.
Dissertation. Universitat Bayreuth, Bayreuth.

Manfred A. Jeusfeld and Bernd Neumayr. 2016. DeepTelos: Multi-level Modeling
with Most General Instances. In Conceptual Modeling, Isabelle Comyn-Wattiau,
Katsumi Tanaka, II-Yeol Song, Shuichiro Yamamoto, and Motoshi Saeki (Eds.).
Springer International Publishing, Cham, 198-211.

Monika Kaczmarek-Hef and Sybren de Kinderen. 2017. A Multilevel Model of IT
Platforms for the Needs of Enterprise IT Landscape Analyses. Bus. Inf. Syst. Eng.
59,5 (2017), 315-329. https://doi.org/10.1007/s12599-017-0482-4

[24

[25

[26

[27

[28

[29

[31

[32

[33

[34

]

]

Daniel Topel and Monika Kaczmarek-Hef3

Monika Kaczmarek-Hef, Mario Nolte, Andreas Fritsch, and Stefanie Betz. 2018.
Practical experiences with multi-level modeling using FMMLx: a hierarchy of
domain-specific modeling languages in support of life-cycle assessment. In Pro-
ceedings of MODELS 2018 Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COM-
MitMDE, MDETools, GEMOC, MORSE, MDE4IoT, MDEbug, MoDeVVa, ME, MULTI,
HuFaMo, AMMoRe, PAINS co-located with ACM/IEEE 21st International Conference
on Model Driven Engineering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, October, 14, 2018 (CEUR Workshop Proceedings, Vol. 2245), Regina Hebig
and Thorsten Berger (Eds.). CEUR-WS.org, 698-707.

Jesus Lopez-Fernandez, Jesus Sanchez Cuadrado, Esther Guerra, and Juan de Lara.
2015. Example-driven meta-model development. Software & System Modeling 14,
4 (2015), 1323-1347.

Fernando Macias, Adrian Rutle, and Volker Stolz. 2016. MultEcore: Combining
the Best of Fixed-Level and Multilevel Metamodelling. In MULTI 2016 (CEUR
Workshop Proceedings, Vol. 1722), Colin Atkinson, Georg Grossmann, and Tony
Clark (Eds.). CEUR-WS.org, 66-75.

Fernando Macias, Adrian Rutle, Volker Stolz, Roberto Rodriguez-Echeverria, and
Uwe Wolter. 2018. An Approach to Flexible Multilevel Modelling. EMISAF 13
(2018), 10:1-10:35.

Bernd Neumayr, Katharina Griin, and Michael Schrefl. 2009. Multi-level do-
main modeling with m-objects and m-relationships. In Proceedings of the Sixth
Asia-Pacific Conference on Conceptual Modeling-Volume 96. Australian Computer
Society, Inc., 107-116.

William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph. D. Disser-
tation. University of Illinois at Urbana-Champaign, USA.

Kristina Rosenthal and Stefan Strecker. 2019. Toward a Taxonomy of Modeling
Difficulties: A Multi-Modal Study on Individual Modeling Processes. In ICIS 2019,
Helmut Krcmar, Jane Fedorowicz, Wai Fong Boh, Jan Marco Leimeister, and Sunil
Wattal (Eds.). AIS.

Friedrich Steimann. 2015. From well-formedness to meaning preservation: model
refactoring for almost free. Softw. Syst. Model. 14, 1 (2015), 307-320.

Daniel Topel and Bjorn Benner. 2017. Maintenance of Multi-level Models - An
Analysis of Elementary Change Operations. In Proceedings of MODELS 2017 Satel-
lite Event: Workshops (ModComp, ME, EXE, COMMitMDE, MRT, MULTI, GEMOC,
MoDeVVa, MDETools, FlexMDE, MDEbug), Posters, Doctoral Symposium, Educator
Symposium, ACM Student Research Competition, and Tools and Demonstrations
co-located with ACM/IEEE 20th International Conference on Model Driven En-
gineering Languages and Systems (MODELS 2017), Austin, TX, USA, September,
17, 2017 (CEUR Workshop Proceedings, Vol. 2019), Loli Burguefio, Jonathan Cor-
ley, Nelly Bencomo, Peter J. Clarke, Philippe Collet, Michalis Famelis, Sudipto
Ghosh, Martin Gogolla, Joel Greenyer, Esther Guerra, Sahar Kokaly, Alfonso
Pierantonio, Julia Rubin, and Davide Di Ruscio (Eds.). CEUR-WS.org, 243-250.
http://ceur-ws.org/Vol-2019/multi_5.pdf

Guido Wachsmuth. 2007. Metamodel Adaptation and Model Co-Adaptation. In
ECOOP 2007 — Object-Oriented Programming (LNCS). Springer, Berlin, Heidelberg,
600-624. https://doi.org/10.1007/978-3-540-73589-2_28

Roel] Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer.

https://aisel.aisnet.org/ecis2022_rp/89
https://aisel.aisnet.org/ecis2022_rp/89
https://doi.org/10.1145/3280985
https://doi.org/10.1145/3280985
https://doi.org/10.1016/j.csi.2019.103390
https://doi.org/10.1007/s12599-017-0482-4
http://ceur-ws.org/Vol-2019/multi_5.pdf
https://doi.org/10.1007/978-3-540-73589-2_28

	Abstract
	1 Introduction
	2 Background
	3 Towards Flexible Modeling: Rationale and Required Change Support
	4 Bottom-up Modeling with FMMLx and XModeler
	4.1 Main Design Decisions and Specific Characteristics of FMMLx and XModeler
	4.2 Added Change Operations and Their Implementation
	4.3 Restrictions on Class Migration
	4.4 Options for Pulling Up Properties

	5 Exemplary Scenario
	6 Conclusions
	References

